Properties

Label 2-936-1.1-c1-0-10
Degree $2$
Conductor $936$
Sign $-1$
Analytic cond. $7.47399$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 13-s − 2·17-s − 4·19-s − 25-s − 6·29-s − 2·37-s − 6·41-s − 12·43-s + 4·47-s − 7·49-s − 6·53-s + 8·59-s − 2·61-s − 2·65-s + 4·67-s + 12·71-s − 14·73-s − 8·83-s + 4·85-s + 18·89-s + 8·95-s − 6·97-s − 14·101-s + 16·103-s − 4·107-s − 2·109-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.277·13-s − 0.485·17-s − 0.917·19-s − 1/5·25-s − 1.11·29-s − 0.328·37-s − 0.937·41-s − 1.82·43-s + 0.583·47-s − 49-s − 0.824·53-s + 1.04·59-s − 0.256·61-s − 0.248·65-s + 0.488·67-s + 1.42·71-s − 1.63·73-s − 0.878·83-s + 0.433·85-s + 1.90·89-s + 0.820·95-s − 0.609·97-s − 1.39·101-s + 1.57·103-s − 0.386·107-s − 0.191·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(7.47399\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 936,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.637423071689071752397002310776, −8.640567914893326663493991937073, −8.067557263920253412091787940410, −7.11188121211474152789224421277, −6.31368244093400769096099024522, −5.15302223585186903893080651929, −4.15951728328837579927312423983, −3.35188513577727550298605037893, −1.88987547858298345510585245863, 0, 1.88987547858298345510585245863, 3.35188513577727550298605037893, 4.15951728328837579927312423983, 5.15302223585186903893080651929, 6.31368244093400769096099024522, 7.11188121211474152789224421277, 8.067557263920253412091787940410, 8.640567914893326663493991937073, 9.637423071689071752397002310776

Graph of the $Z$-function along the critical line