Properties

Label 2-92400-1.1-c1-0-69
Degree $2$
Conductor $92400$
Sign $1$
Analytic cond. $737.817$
Root an. cond. $27.1628$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 11-s + 7·13-s + 6·17-s + 19-s + 21-s + 27-s − 3·29-s − 2·31-s − 33-s − 5·37-s + 7·39-s − 12·41-s + 8·43-s − 3·47-s + 49-s + 6·51-s + 12·53-s + 57-s + 3·59-s − 10·61-s + 63-s − 13·67-s + 12·71-s − 11·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.301·11-s + 1.94·13-s + 1.45·17-s + 0.229·19-s + 0.218·21-s + 0.192·27-s − 0.557·29-s − 0.359·31-s − 0.174·33-s − 0.821·37-s + 1.12·39-s − 1.87·41-s + 1.21·43-s − 0.437·47-s + 1/7·49-s + 0.840·51-s + 1.64·53-s + 0.132·57-s + 0.390·59-s − 1.28·61-s + 0.125·63-s − 1.58·67-s + 1.42·71-s − 1.28·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(92400\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(737.817\)
Root analytic conductor: \(27.1628\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 92400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.189158179\)
\(L(\frac12)\) \(\approx\) \(4.189158179\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99216922268909, −13.31767779634816, −13.07888851801078, −12.36756414264990, −11.82228386358275, −11.47871528829663, −10.68140672157092, −10.47885792787758, −9.931551794174588, −9.215140507093592, −8.730501699094252, −8.463193427119620, −7.695879037459463, −7.539026775227594, −6.733799470727413, −6.165510632610360, −5.502081305733705, −5.259847995211503, −4.305011475137184, −3.783867682595968, −3.324796033526425, −2.811347309176290, −1.765528234787007, −1.463198236660156, −0.6471576657518967, 0.6471576657518967, 1.463198236660156, 1.765528234787007, 2.811347309176290, 3.324796033526425, 3.783867682595968, 4.305011475137184, 5.259847995211503, 5.502081305733705, 6.165510632610360, 6.733799470727413, 7.539026775227594, 7.695879037459463, 8.463193427119620, 8.730501699094252, 9.215140507093592, 9.931551794174588, 10.47885792787758, 10.68140672157092, 11.47871528829663, 11.82228386358275, 12.36756414264990, 13.07888851801078, 13.31767779634816, 13.99216922268909

Graph of the $Z$-function along the critical line