Properties

Label 2-90354-1.1-c1-0-15
Degree $2$
Conductor $90354$
Sign $-1$
Analytic cond. $721.480$
Root an. cond. $26.8603$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 2·7-s + 8-s + 9-s − 11-s + 12-s + 2·13-s − 2·14-s + 16-s − 2·17-s + 18-s − 4·19-s − 2·21-s − 22-s + 8·23-s + 24-s − 5·25-s + 2·26-s + 27-s − 2·28-s − 10·29-s + 2·31-s + 32-s − 33-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s + 0.554·13-s − 0.534·14-s + 1/4·16-s − 0.485·17-s + 0.235·18-s − 0.917·19-s − 0.436·21-s − 0.213·22-s + 1.66·23-s + 0.204·24-s − 25-s + 0.392·26-s + 0.192·27-s − 0.377·28-s − 1.85·29-s + 0.359·31-s + 0.176·32-s − 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90354 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(90354\)    =    \(2 \cdot 3 \cdot 11 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(721.480\)
Root analytic conductor: \(26.8603\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 90354,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 + T \)
37 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.16295275413321, −13.36549462973676, −13.20656991721765, −12.83502153142455, −12.43310863176048, −11.55360666117027, −11.25342659973626, −10.66401806628389, −10.27276348935197, −9.529752500551527, −9.063118143561899, −8.765777719787874, −7.943266321045821, −7.451239214547850, −7.045953629274904, −6.309281339094258, −6.014259456232017, −5.338957073680210, −4.715055653338689, −3.964062798190424, −3.757566274087080, −2.991017190354388, −2.472939158734554, −1.900772045332961, −1.015832983531596, 0, 1.015832983531596, 1.900772045332961, 2.472939158734554, 2.991017190354388, 3.757566274087080, 3.964062798190424, 4.715055653338689, 5.338957073680210, 6.014259456232017, 6.309281339094258, 7.045953629274904, 7.451239214547850, 7.943266321045821, 8.765777719787874, 9.063118143561899, 9.529752500551527, 10.27276348935197, 10.66401806628389, 11.25342659973626, 11.55360666117027, 12.43310863176048, 12.83502153142455, 13.20656991721765, 13.36549462973676, 14.16295275413321

Graph of the $Z$-function along the critical line