Properties

Label 2-88752-1.1-c1-0-22
Degree $2$
Conductor $88752$
Sign $-1$
Analytic cond. $708.688$
Root an. cond. $26.6211$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 7-s + 9-s + 11-s + 13-s + 3·15-s + 4·17-s + 19-s + 21-s + 4·23-s + 4·25-s − 27-s + 9·29-s − 2·31-s − 33-s + 3·35-s − 2·37-s − 39-s − 8·41-s − 3·45-s + 11·47-s − 6·49-s − 4·51-s + 4·53-s − 3·55-s − 57-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 0.377·7-s + 1/3·9-s + 0.301·11-s + 0.277·13-s + 0.774·15-s + 0.970·17-s + 0.229·19-s + 0.218·21-s + 0.834·23-s + 4/5·25-s − 0.192·27-s + 1.67·29-s − 0.359·31-s − 0.174·33-s + 0.507·35-s − 0.328·37-s − 0.160·39-s − 1.24·41-s − 0.447·45-s + 1.60·47-s − 6/7·49-s − 0.560·51-s + 0.549·53-s − 0.404·55-s − 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 88752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(88752\)    =    \(2^{4} \cdot 3 \cdot 43^{2}\)
Sign: $-1$
Analytic conductor: \(708.688\)
Root analytic conductor: \(26.6211\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 88752,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
43 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 8 T + p T^{2} \) 1.41.i
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.18526341368377, −13.59576310083533, −13.02351522576483, −12.46530997343554, −12.12440935611647, −11.67061943481260, −11.33806178869057, −10.72750858549572, −10.11116900512307, −9.922080768073167, −8.868435532078115, −8.736841196613709, −7.998572154945368, −7.510985015446446, −7.031718357575827, −6.550006081156882, −5.985415357409726, −5.182191526740928, −4.928455092458524, −4.056961808184549, −3.713399022944370, −3.154596220566869, −2.462269890765809, −1.303595010611750, −0.8416338592691745, 0, 0.8416338592691745, 1.303595010611750, 2.462269890765809, 3.154596220566869, 3.713399022944370, 4.056961808184549, 4.928455092458524, 5.182191526740928, 5.985415357409726, 6.550006081156882, 7.031718357575827, 7.510985015446446, 7.998572154945368, 8.736841196613709, 8.868435532078115, 9.922080768073167, 10.11116900512307, 10.72750858549572, 11.33806178869057, 11.67061943481260, 12.12440935611647, 12.46530997343554, 13.02351522576483, 13.59576310083533, 14.18526341368377

Graph of the $Z$-function along the critical line