Properties

Label 2-880-1.1-c1-0-16
Degree $2$
Conductor $880$
Sign $-1$
Analytic cond. $7.02683$
Root an. cond. $2.65081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s − 3·9-s + 11-s + 6·13-s − 6·17-s − 4·19-s − 4·23-s + 25-s − 2·29-s − 8·31-s − 4·35-s − 10·37-s + 10·41-s − 3·45-s − 4·47-s + 9·49-s − 10·53-s + 55-s + 4·59-s − 2·61-s + 12·63-s + 6·65-s + 8·67-s − 14·73-s − 4·77-s + 16·79-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s − 9-s + 0.301·11-s + 1.66·13-s − 1.45·17-s − 0.917·19-s − 0.834·23-s + 1/5·25-s − 0.371·29-s − 1.43·31-s − 0.676·35-s − 1.64·37-s + 1.56·41-s − 0.447·45-s − 0.583·47-s + 9/7·49-s − 1.37·53-s + 0.134·55-s + 0.520·59-s − 0.256·61-s + 1.51·63-s + 0.744·65-s + 0.977·67-s − 1.63·73-s − 0.455·77-s + 1.80·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(880\)    =    \(2^{4} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(7.02683\)
Root analytic conductor: \(2.65081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 880,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.505420051880408558953184147023, −8.993315127109560825672547029745, −8.294068680294176403765781809942, −6.79637909196263478888408793326, −6.27108685587236300377566499608, −5.63628573418698799390682191313, −4.05902436868145020817401928937, −3.26973932766649133809304477558, −2.03028148171803176729508478145, 0, 2.03028148171803176729508478145, 3.26973932766649133809304477558, 4.05902436868145020817401928937, 5.63628573418698799390682191313, 6.27108685587236300377566499608, 6.79637909196263478888408793326, 8.294068680294176403765781809942, 8.993315127109560825672547029745, 9.505420051880408558953184147023

Graph of the $Z$-function along the critical line