Properties

Label 2-86700-1.1-c1-0-32
Degree $2$
Conductor $86700$
Sign $-1$
Analytic cond. $692.302$
Root an. cond. $26.3116$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 5·13-s − 19-s − 21-s + 6·23-s + 27-s − 5·31-s − 37-s − 5·39-s − 5·43-s + 12·47-s − 6·49-s − 12·53-s − 57-s + 12·59-s + 61-s − 63-s + 13·67-s + 6·69-s − 6·71-s + 2·73-s − 8·79-s + 81-s + 6·83-s − 6·89-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 1.38·13-s − 0.229·19-s − 0.218·21-s + 1.25·23-s + 0.192·27-s − 0.898·31-s − 0.164·37-s − 0.800·39-s − 0.762·43-s + 1.75·47-s − 6/7·49-s − 1.64·53-s − 0.132·57-s + 1.56·59-s + 0.128·61-s − 0.125·63-s + 1.58·67-s + 0.722·69-s − 0.712·71-s + 0.234·73-s − 0.900·79-s + 1/9·81-s + 0.658·83-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(86700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(692.302\)
Root analytic conductor: \(26.3116\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 86700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.36906954901881, −13.69915141446700, −12.95212873565883, −12.84384550079327, −12.37072566325213, −11.62457521267039, −11.28238393651924, −10.50958046283333, −10.18661179723412, −9.528599014789324, −9.238654374578653, −8.707533905153022, −8.065348562670666, −7.587747570936526, −6.932542953422012, −6.803764124360709, −5.906791523395027, −5.256502611662417, −4.836559464197548, −4.188722975195891, −3.495690667321041, −2.994135513950998, −2.373620636986006, −1.820036883299832, −0.8765382020627382, 0, 0.8765382020627382, 1.820036883299832, 2.373620636986006, 2.994135513950998, 3.495690667321041, 4.188722975195891, 4.836559464197548, 5.256502611662417, 5.906791523395027, 6.803764124360709, 6.932542953422012, 7.587747570936526, 8.065348562670666, 8.707533905153022, 9.238654374578653, 9.528599014789324, 10.18661179723412, 10.50958046283333, 11.28238393651924, 11.62457521267039, 12.37072566325213, 12.84384550079327, 12.95212873565883, 13.69915141446700, 14.36906954901881

Graph of the $Z$-function along the critical line