Properties

Label 2-858-1.1-c1-0-14
Degree $2$
Conductor $858$
Sign $1$
Analytic cond. $6.85116$
Root an. cond. $2.61747$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 4·5-s + 6-s − 4·7-s + 8-s + 9-s + 4·10-s + 11-s + 12-s − 13-s − 4·14-s + 4·15-s + 16-s + 4·17-s + 18-s − 4·19-s + 4·20-s − 4·21-s + 22-s + 8·23-s + 24-s + 11·25-s − 26-s + 27-s − 4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.78·5-s + 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s + 1.26·10-s + 0.301·11-s + 0.288·12-s − 0.277·13-s − 1.06·14-s + 1.03·15-s + 1/4·16-s + 0.970·17-s + 0.235·18-s − 0.917·19-s + 0.894·20-s − 0.872·21-s + 0.213·22-s + 1.66·23-s + 0.204·24-s + 11/5·25-s − 0.196·26-s + 0.192·27-s − 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(858\)    =    \(2 \cdot 3 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(6.85116\)
Root analytic conductor: \(2.61747\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 858,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.418346408\)
\(L(\frac12)\) \(\approx\) \(3.418346408\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20217929164752063773669448388, −9.308592334120201396838900493464, −8.887860262586512140854508642144, −7.22619514679261276402292453329, −6.58410892357960633880686900153, −5.84003805364552851081046917817, −4.98774365097387991463126539862, −3.48962054325808624486728186620, −2.79700721288937028347473279893, −1.65926995200329057960656430027, 1.65926995200329057960656430027, 2.79700721288937028347473279893, 3.48962054325808624486728186620, 4.98774365097387991463126539862, 5.84003805364552851081046917817, 6.58410892357960633880686900153, 7.22619514679261276402292453329, 8.887860262586512140854508642144, 9.308592334120201396838900493464, 10.20217929164752063773669448388

Graph of the $Z$-function along the critical line