Properties

Label 2-8568-1.1-c1-0-41
Degree $2$
Conductor $8568$
Sign $1$
Analytic cond. $68.4158$
Root an. cond. $8.27138$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 11-s − 13-s + 17-s + 5·19-s + 23-s − 4·25-s + 2·29-s − 6·31-s + 35-s + 8·37-s − 5·41-s − 43-s + 2·47-s + 49-s + 6·53-s + 55-s + 2·59-s + 8·61-s − 65-s − 4·67-s + 12·71-s + 14·73-s + 77-s − 10·79-s + 6·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 0.301·11-s − 0.277·13-s + 0.242·17-s + 1.14·19-s + 0.208·23-s − 4/5·25-s + 0.371·29-s − 1.07·31-s + 0.169·35-s + 1.31·37-s − 0.780·41-s − 0.152·43-s + 0.291·47-s + 1/7·49-s + 0.824·53-s + 0.134·55-s + 0.260·59-s + 1.02·61-s − 0.124·65-s − 0.488·67-s + 1.42·71-s + 1.63·73-s + 0.113·77-s − 1.12·79-s + 0.658·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8568\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(68.4158\)
Root analytic conductor: \(8.27138\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8568,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.511246944\)
\(L(\frac12)\) \(\approx\) \(2.511246944\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79039512801415014044992382786, −7.10392357800598505289037498515, −6.43826974052610969397430295611, −5.52727847194738197229729450405, −5.22132539443336312033338184243, −4.22032454121895117601748302045, −3.51249240834977465257373983267, −2.57584654193292557466337067802, −1.75775551472930221542437964705, −0.797723128774920797158434020972, 0.797723128774920797158434020972, 1.75775551472930221542437964705, 2.57584654193292557466337067802, 3.51249240834977465257373983267, 4.22032454121895117601748302045, 5.22132539443336312033338184243, 5.52727847194738197229729450405, 6.43826974052610969397430295611, 7.10392357800598505289037498515, 7.79039512801415014044992382786

Graph of the $Z$-function along the critical line