Properties

Label 2-8330-1.1-c1-0-40
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 8-s − 3·9-s − 10-s + 6·11-s − 2·13-s + 16-s + 17-s + 3·18-s − 8·19-s + 20-s − 6·22-s − 4·23-s + 25-s + 2·26-s + 10·29-s − 8·31-s − 32-s − 34-s − 3·36-s − 8·37-s + 8·38-s − 40-s − 6·41-s + 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s − 9-s − 0.316·10-s + 1.80·11-s − 0.554·13-s + 1/4·16-s + 0.242·17-s + 0.707·18-s − 1.83·19-s + 0.223·20-s − 1.27·22-s − 0.834·23-s + 1/5·25-s + 0.392·26-s + 1.85·29-s − 1.43·31-s − 0.176·32-s − 0.171·34-s − 1/2·36-s − 1.31·37-s + 1.29·38-s − 0.158·40-s − 0.937·41-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.291882733\)
\(L(\frac12)\) \(\approx\) \(1.291882733\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.990279878657629552975281664036, −6.97118270012003083899240157204, −6.50979408493889219597540636146, −5.98258515296966971538137664572, −5.13912677655092839398803122604, −4.15029940975193900477955130754, −3.45061960880483354722621453028, −2.36557022294362102988764227886, −1.79960277469354253606180983882, −0.61076295949644698555682830847, 0.61076295949644698555682830847, 1.79960277469354253606180983882, 2.36557022294362102988764227886, 3.45061960880483354722621453028, 4.15029940975193900477955130754, 5.13912677655092839398803122604, 5.98258515296966971538137664572, 6.50979408493889219597540636146, 6.97118270012003083899240157204, 7.990279878657629552975281664036

Graph of the $Z$-function along the critical line