Properties

Label 2-7938-1.1-c1-0-38
Degree $2$
Conductor $7938$
Sign $1$
Analytic cond. $63.3852$
Root an. cond. $7.96148$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s − 8-s + 3·10-s + 6·11-s + 13-s + 16-s + 3·17-s − 2·19-s − 3·20-s − 6·22-s + 6·23-s + 4·25-s − 26-s + 9·29-s + 10·31-s − 32-s − 3·34-s − 7·37-s + 2·38-s + 3·40-s + 6·41-s − 4·43-s + 6·44-s − 6·46-s + 6·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.353·8-s + 0.948·10-s + 1.80·11-s + 0.277·13-s + 1/4·16-s + 0.727·17-s − 0.458·19-s − 0.670·20-s − 1.27·22-s + 1.25·23-s + 4/5·25-s − 0.196·26-s + 1.67·29-s + 1.79·31-s − 0.176·32-s − 0.514·34-s − 1.15·37-s + 0.324·38-s + 0.474·40-s + 0.937·41-s − 0.609·43-s + 0.904·44-s − 0.884·46-s + 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7938\)    =    \(2 \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(63.3852\)
Root analytic conductor: \(7.96148\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7938,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.403335344\)
\(L(\frac12)\) \(\approx\) \(1.403335344\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.895626160485635645639447831647, −7.22491201169300574489774379035, −6.62122875679369166671317533937, −6.09659361780366225780678499454, −4.84353982835863770665530893587, −4.20858234757110523931060842705, −3.48654985780300195709992925545, −2.78234548155523523158272552207, −1.35995230440770390982176049155, −0.75014658543720990394544395207, 0.75014658543720990394544395207, 1.35995230440770390982176049155, 2.78234548155523523158272552207, 3.48654985780300195709992925545, 4.20858234757110523931060842705, 4.84353982835863770665530893587, 6.09659361780366225780678499454, 6.62122875679369166671317533937, 7.22491201169300574489774379035, 7.895626160485635645639447831647

Graph of the $Z$-function along the critical line