Properties

Label 2-280e2-1.1-c1-0-271
Degree $2$
Conductor $78400$
Sign $-1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s − 2·17-s + 2·19-s + 8·23-s − 4·27-s − 2·29-s + 4·31-s − 6·37-s + 2·41-s − 8·43-s + 4·47-s − 4·51-s − 10·53-s + 4·57-s − 6·59-s + 4·61-s + 12·67-s + 16·69-s − 14·73-s + 8·79-s − 11·81-s + 6·83-s − 4·87-s − 10·89-s + 8·93-s − 2·97-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s − 0.485·17-s + 0.458·19-s + 1.66·23-s − 0.769·27-s − 0.371·29-s + 0.718·31-s − 0.986·37-s + 0.312·41-s − 1.21·43-s + 0.583·47-s − 0.560·51-s − 1.37·53-s + 0.529·57-s − 0.781·59-s + 0.512·61-s + 1.46·67-s + 1.92·69-s − 1.63·73-s + 0.900·79-s − 1.22·81-s + 0.658·83-s − 0.428·87-s − 1.05·89-s + 0.829·93-s − 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.24578431051427, −13.80083776033785, −13.36882128979001, −12.91061280133318, −12.43574488859028, −11.70115021842303, −11.28874235894922, −10.80026102660086, −10.11854546878722, −9.649628766281337, −9.082615867709727, −8.748565477788141, −8.305896490924472, −7.613275472213121, −7.293607264554542, −6.597999909081538, −6.122522706345531, −5.170254146539751, −4.964119406264824, −4.094115589461707, −3.493516790296033, −3.021741390164949, −2.492893953540129, −1.777251469366038, −1.071907909150218, 0, 1.071907909150218, 1.777251469366038, 2.492893953540129, 3.021741390164949, 3.493516790296033, 4.094115589461707, 4.964119406264824, 5.170254146539751, 6.122522706345531, 6.597999909081538, 7.293607264554542, 7.613275472213121, 8.305896490924472, 8.748565477788141, 9.082615867709727, 9.649628766281337, 10.11854546878722, 10.80026102660086, 11.28874235894922, 11.70115021842303, 12.43574488859028, 12.91061280133318, 13.36882128979001, 13.80083776033785, 14.24578431051427

Graph of the $Z$-function along the critical line