Properties

Label 78400.js
Number of curves $2$
Conductor $78400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("js1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 78400.js have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 78400.js do not have complex multiplication.

Modular form 78400.2.a.js

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{9} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 78400.js

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
78400.js1 78400ib2 \([0, -1, 0, -197633, -33344863]\) \(3543122/49\) \(11806312448000000\) \([2]\) \(491520\) \(1.8896\)  
78400.js2 78400ib1 \([0, -1, 0, -1633, -1396863]\) \(-4/7\) \(-843308032000000\) \([2]\) \(245760\) \(1.5430\) \(\Gamma_0(N)\)-optimal