Properties

Label 2-78144-1.1-c1-0-62
Degree $2$
Conductor $78144$
Sign $-1$
Analytic cond. $623.982$
Root an. cond. $24.9796$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 11-s + 2·13-s + 2·15-s + 6·17-s + 4·19-s + 4·23-s − 25-s − 27-s + 6·29-s − 8·31-s − 33-s − 37-s − 2·39-s + 2·41-s + 4·43-s − 2·45-s − 7·49-s − 6·51-s − 6·53-s − 2·55-s − 4·57-s + 8·59-s + 10·61-s − 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.301·11-s + 0.554·13-s + 0.516·15-s + 1.45·17-s + 0.917·19-s + 0.834·23-s − 1/5·25-s − 0.192·27-s + 1.11·29-s − 1.43·31-s − 0.174·33-s − 0.164·37-s − 0.320·39-s + 0.312·41-s + 0.609·43-s − 0.298·45-s − 49-s − 0.840·51-s − 0.824·53-s − 0.269·55-s − 0.529·57-s + 1.04·59-s + 1.28·61-s − 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78144\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(623.982\)
Root analytic conductor: \(24.9796\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78144,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
37 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.36522029261415, −13.81729476956507, −13.14748352025858, −12.67914359509730, −12.17063475750548, −11.81533776807307, −11.28967540597383, −10.93770183794146, −10.35957504907249, −9.669408957586779, −9.405600465135456, −8.587281429451231, −8.120395709165031, −7.575508389718153, −7.179179863566769, −6.559689906149565, −5.976697447842227, −5.287119879350307, −5.049675635355796, −4.152905747904451, −3.638764566984400, −3.274248317994365, −2.409367850846878, −1.303629784673920, −0.9880632398007781, 0, 0.9880632398007781, 1.303629784673920, 2.409367850846878, 3.274248317994365, 3.638764566984400, 4.152905747904451, 5.049675635355796, 5.287119879350307, 5.976697447842227, 6.559689906149565, 7.179179863566769, 7.575508389718153, 8.120395709165031, 8.587281429451231, 9.405600465135456, 9.669408957586779, 10.35957504907249, 10.93770183794146, 11.28967540597383, 11.81533776807307, 12.17063475750548, 12.67914359509730, 13.14748352025858, 13.81729476956507, 14.36522029261415

Graph of the $Z$-function along the critical line