Properties

Label 2-76050-1.1-c1-0-29
Degree $2$
Conductor $76050$
Sign $1$
Analytic cond. $607.262$
Root an. cond. $24.6426$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 4·7-s − 8-s − 2·11-s + 4·14-s + 16-s + 2·17-s − 6·19-s + 2·22-s + 6·23-s − 4·28-s − 2·29-s + 6·31-s − 32-s − 2·34-s − 2·37-s + 6·38-s + 10·41-s + 10·43-s − 2·44-s − 6·46-s + 12·47-s + 9·49-s + 2·53-s + 4·56-s + 2·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.51·7-s − 0.353·8-s − 0.603·11-s + 1.06·14-s + 1/4·16-s + 0.485·17-s − 1.37·19-s + 0.426·22-s + 1.25·23-s − 0.755·28-s − 0.371·29-s + 1.07·31-s − 0.176·32-s − 0.342·34-s − 0.328·37-s + 0.973·38-s + 1.56·41-s + 1.52·43-s − 0.301·44-s − 0.884·46-s + 1.75·47-s + 9/7·49-s + 0.274·53-s + 0.534·56-s + 0.262·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(607.262\)
Root analytic conductor: \(24.6426\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 76050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.265864046\)
\(L(\frac12)\) \(\approx\) \(1.265864046\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99981189826948, −13.46069203018709, −12.90447693321566, −12.51004532869321, −12.31076016151851, −11.33605049346806, −10.97034117057906, −10.37372496424163, −10.09935760521403, −9.476385281760709, −8.987428251802548, −8.656621910739655, −7.910973153661526, −7.345830706543413, −6.953124082509343, −6.311686952398488, −5.902981046545039, −5.359331937151470, −4.441785128172073, −3.901629445985014, −3.170691266599008, −2.597457311484171, −2.214833281448687, −0.9640518231558059, −0.5088488503517972, 0.5088488503517972, 0.9640518231558059, 2.214833281448687, 2.597457311484171, 3.170691266599008, 3.901629445985014, 4.441785128172073, 5.359331937151470, 5.902981046545039, 6.311686952398488, 6.953124082509343, 7.345830706543413, 7.910973153661526, 8.656621910739655, 8.987428251802548, 9.476385281760709, 10.09935760521403, 10.37372496424163, 10.97034117057906, 11.33605049346806, 12.31076016151851, 12.51004532869321, 12.90447693321566, 13.46069203018709, 13.99981189826948

Graph of the $Z$-function along the critical line