Properties

Label 2-76050-1.1-c1-0-60
Degree $2$
Conductor $76050$
Sign $-1$
Analytic cond. $607.262$
Root an. cond. $24.6426$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5·7-s − 8-s − 2·11-s + 5·14-s + 16-s − 2·17-s + 3·19-s + 2·22-s + 6·23-s − 5·28-s − 10·29-s − 32-s + 2·34-s + 2·37-s − 3·38-s − 8·41-s + 43-s − 2·44-s − 6·46-s + 12·47-s + 18·49-s − 2·53-s + 5·56-s + 10·58-s − 14·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.88·7-s − 0.353·8-s − 0.603·11-s + 1.33·14-s + 1/4·16-s − 0.485·17-s + 0.688·19-s + 0.426·22-s + 1.25·23-s − 0.944·28-s − 1.85·29-s − 0.176·32-s + 0.342·34-s + 0.328·37-s − 0.486·38-s − 1.24·41-s + 0.152·43-s − 0.301·44-s − 0.884·46-s + 1.75·47-s + 18/7·49-s − 0.274·53-s + 0.668·56-s + 1.31·58-s − 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(607.262\)
Root analytic conductor: \(24.6426\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 76050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23529597100580, −13.64198891971894, −13.23647610619728, −12.76850222298866, −12.44245884133458, −11.76121469782106, −11.16591911679539, −10.66758222757200, −10.28704366205290, −9.515197439648512, −9.400591581066139, −8.946246207064823, −8.259247203265410, −7.437223933251606, −7.290624454655698, −6.586328494992687, −6.212628295807959, −5.481575207326554, −5.104206610332828, −4.000829344188411, −3.567778556477771, −2.869408738135376, −2.532200044283509, −1.583492682338162, −0.6548165172368694, 0, 0.6548165172368694, 1.583492682338162, 2.532200044283509, 2.869408738135376, 3.567778556477771, 4.000829344188411, 5.104206610332828, 5.481575207326554, 6.212628295807959, 6.586328494992687, 7.290624454655698, 7.437223933251606, 8.259247203265410, 8.946246207064823, 9.400591581066139, 9.515197439648512, 10.28704366205290, 10.66758222757200, 11.16591911679539, 11.76121469782106, 12.44245884133458, 12.76850222298866, 13.23647610619728, 13.64198891971894, 14.23529597100580

Graph of the $Z$-function along the critical line