Properties

Label 2-73920-1.1-c1-0-52
Degree $2$
Conductor $73920$
Sign $1$
Analytic cond. $590.254$
Root an. cond. $24.2951$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 7-s + 9-s + 11-s − 2·13-s − 15-s + 6·17-s + 4·19-s − 21-s + 25-s − 27-s − 6·29-s + 8·31-s − 33-s + 35-s + 10·37-s + 2·39-s − 6·41-s − 8·43-s + 45-s + 49-s − 6·51-s − 6·53-s + 55-s − 4·57-s − 12·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.301·11-s − 0.554·13-s − 0.258·15-s + 1.45·17-s + 0.917·19-s − 0.218·21-s + 1/5·25-s − 0.192·27-s − 1.11·29-s + 1.43·31-s − 0.174·33-s + 0.169·35-s + 1.64·37-s + 0.320·39-s − 0.937·41-s − 1.21·43-s + 0.149·45-s + 1/7·49-s − 0.840·51-s − 0.824·53-s + 0.134·55-s − 0.529·57-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(73920\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(590.254\)
Root analytic conductor: \(24.2951\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 73920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.530040801\)
\(L(\frac12)\) \(\approx\) \(2.530040801\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.10318629356721, −13.53372255029989, −13.17125932920344, −12.39430906192806, −12.07995886982503, −11.65676123991096, −11.13596369554488, −10.57182163431833, −9.937286500083376, −9.641738521760384, −9.272753305979167, −8.306652462531926, −7.923124075734835, −7.425491166119153, −6.821891508656174, −6.173932636718767, −5.783950491642897, −5.073588309005020, −4.844385899905719, −4.038175654906841, −3.289538434496252, −2.794422687687344, −1.834525902136219, −1.306781798835225, −0.5805301393220787, 0.5805301393220787, 1.306781798835225, 1.834525902136219, 2.794422687687344, 3.289538434496252, 4.038175654906841, 4.844385899905719, 5.073588309005020, 5.783950491642897, 6.173932636718767, 6.821891508656174, 7.425491166119153, 7.923124075734835, 8.306652462531926, 9.272753305979167, 9.641738521760384, 9.937286500083376, 10.57182163431833, 11.13596369554488, 11.65676123991096, 12.07995886982503, 12.39430906192806, 13.17125932920344, 13.53372255029989, 14.10318629356721

Graph of the $Z$-function along the critical line