Properties

Label 2-72128-1.1-c1-0-43
Degree $2$
Conductor $72128$
Sign $-1$
Analytic cond. $575.944$
Root an. cond. $23.9988$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s + 6·17-s + 6·19-s + 23-s − 5·25-s + 4·27-s + 6·29-s − 8·31-s − 2·37-s + 2·41-s + 8·43-s + 8·47-s − 12·51-s + 2·53-s − 12·57-s − 6·59-s + 12·67-s − 2·69-s − 8·71-s + 6·73-s + 10·75-s − 16·79-s − 11·81-s + 6·83-s − 12·87-s − 6·89-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s + 1.45·17-s + 1.37·19-s + 0.208·23-s − 25-s + 0.769·27-s + 1.11·29-s − 1.43·31-s − 0.328·37-s + 0.312·41-s + 1.21·43-s + 1.16·47-s − 1.68·51-s + 0.274·53-s − 1.58·57-s − 0.781·59-s + 1.46·67-s − 0.240·69-s − 0.949·71-s + 0.702·73-s + 1.15·75-s − 1.80·79-s − 1.22·81-s + 0.658·83-s − 1.28·87-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72128\)    =    \(2^{6} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(575.944\)
Root analytic conductor: \(23.9988\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72128,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.30018170940565, −13.94194877268016, −13.35883173306388, −12.57823003768520, −12.30815114757390, −11.84995648057372, −11.45147336763334, −10.85694504306973, −10.43789631794035, −9.904343714024007, −9.389110896002039, −8.869683342982183, −8.087057738595168, −7.561544730650321, −7.204895970426729, −6.467417920515486, −5.892451801430884, −5.377118233375271, −5.266622576925844, −4.336338899995144, −3.742421511352185, −3.080518481117086, −2.429033689004062, −1.342938119029799, −0.9264517522374728, 0, 0.9264517522374728, 1.342938119029799, 2.429033689004062, 3.080518481117086, 3.742421511352185, 4.336338899995144, 5.266622576925844, 5.377118233375271, 5.892451801430884, 6.467417920515486, 7.204895970426729, 7.561544730650321, 8.087057738595168, 8.869683342982183, 9.389110896002039, 9.904343714024007, 10.43789631794035, 10.85694504306973, 11.45147336763334, 11.84995648057372, 12.30815114757390, 12.57823003768520, 13.35883173306388, 13.94194877268016, 14.30018170940565

Graph of the $Z$-function along the critical line