Properties

Label 2-70560-1.1-c1-0-65
Degree $2$
Conductor $70560$
Sign $1$
Analytic cond. $563.424$
Root an. cond. $23.7365$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·11-s + 6·13-s + 6·17-s + 4·19-s + 4·23-s + 25-s + 2·29-s − 8·31-s + 6·37-s + 6·41-s + 8·43-s − 6·53-s + 4·55-s − 4·59-s − 10·61-s + 6·65-s + 8·67-s − 12·71-s + 14·73-s − 16·79-s − 12·83-s + 6·85-s + 14·89-s + 4·95-s − 18·97-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.20·11-s + 1.66·13-s + 1.45·17-s + 0.917·19-s + 0.834·23-s + 1/5·25-s + 0.371·29-s − 1.43·31-s + 0.986·37-s + 0.937·41-s + 1.21·43-s − 0.824·53-s + 0.539·55-s − 0.520·59-s − 1.28·61-s + 0.744·65-s + 0.977·67-s − 1.42·71-s + 1.63·73-s − 1.80·79-s − 1.31·83-s + 0.650·85-s + 1.48·89-s + 0.410·95-s − 1.82·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70560\)    =    \(2^{5} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(563.424\)
Root analytic conductor: \(23.7365\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 70560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.711399392\)
\(L(\frac12)\) \(\approx\) \(4.711399392\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02193761180334, −13.84673979509869, −13.09344647057665, −12.64164623543400, −12.22596727333570, −11.48180509915474, −11.15784667149881, −10.73532855163740, −10.00639760301007, −9.452963160021651, −9.127731019019438, −8.675254430523961, −7.890491248483117, −7.488441419062770, −6.845652388601899, −6.192811351392173, −5.809365499447307, −5.402105706946502, −4.490019746064206, −3.970772647684121, −3.287303592890146, −2.969207020245445, −1.830339260113409, −1.210532849303166, −0.8639689070590989, 0.8639689070590989, 1.210532849303166, 1.830339260113409, 2.969207020245445, 3.287303592890146, 3.970772647684121, 4.490019746064206, 5.402105706946502, 5.809365499447307, 6.192811351392173, 6.845652388601899, 7.488441419062770, 7.890491248483117, 8.675254430523961, 9.127731019019438, 9.452963160021651, 10.00639760301007, 10.73532855163740, 11.15784667149881, 11.48180509915474, 12.22596727333570, 12.64164623543400, 13.09344647057665, 13.84673979509869, 14.02193761180334

Graph of the $Z$-function along the critical line