Properties

Label 2-264e2-1.1-c1-0-163
Degree $2$
Conductor $69696$
Sign $-1$
Analytic cond. $556.525$
Root an. cond. $23.5907$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·7-s − 6·13-s + 2·17-s + 4·19-s − 4·23-s − 25-s − 6·29-s + 8·35-s − 6·37-s − 6·41-s + 4·43-s + 12·47-s + 9·49-s + 2·53-s + 12·59-s − 14·61-s − 12·65-s − 4·67-s + 12·71-s + 6·73-s + 4·79-s − 4·83-s + 4·85-s − 10·89-s − 24·91-s + 8·95-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.51·7-s − 1.66·13-s + 0.485·17-s + 0.917·19-s − 0.834·23-s − 1/5·25-s − 1.11·29-s + 1.35·35-s − 0.986·37-s − 0.937·41-s + 0.609·43-s + 1.75·47-s + 9/7·49-s + 0.274·53-s + 1.56·59-s − 1.79·61-s − 1.48·65-s − 0.488·67-s + 1.42·71-s + 0.702·73-s + 0.450·79-s − 0.439·83-s + 0.433·85-s − 1.05·89-s − 2.51·91-s + 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69696\)    =    \(2^{6} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(556.525\)
Root analytic conductor: \(23.5907\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 69696,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.17528661553722, −14.00435619130254, −13.68680455863234, −12.85218298001225, −12.23160299299971, −11.96379796896672, −11.48985678370683, −10.76947510518979, −10.37917375515731, −9.784046668403410, −9.418978606037086, −8.893739607254956, −8.001149230214912, −7.863437269748741, −7.199484775984113, −6.769020332415157, −5.717506315630441, −5.436426682750809, −5.141140882411773, −4.349103268162291, −3.827348527710574, −2.860411905366504, −2.217591619249227, −1.807655099762233, −1.117005334360738, 0, 1.117005334360738, 1.807655099762233, 2.217591619249227, 2.860411905366504, 3.827348527710574, 4.349103268162291, 5.141140882411773, 5.436426682750809, 5.717506315630441, 6.769020332415157, 7.199484775984113, 7.863437269748741, 8.001149230214912, 8.893739607254956, 9.418978606037086, 9.784046668403410, 10.37917375515731, 10.76947510518979, 11.48985678370683, 11.96379796896672, 12.23160299299971, 12.85218298001225, 13.68680455863234, 14.00435619130254, 14.17528661553722

Graph of the $Z$-function along the critical line