Properties

Label 2-68544-1.1-c1-0-8
Degree $2$
Conductor $68544$
Sign $1$
Analytic cond. $547.326$
Root an. cond. $23.3950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 7-s + 4·11-s − 2·13-s + 17-s − 4·19-s + 4·23-s − 25-s − 2·29-s − 8·31-s + 2·35-s + 2·37-s + 2·41-s + 8·43-s + 49-s + 6·53-s − 8·55-s − 4·59-s − 2·61-s + 4·65-s − 8·67-s + 4·71-s − 6·73-s − 4·77-s + 4·83-s − 2·85-s − 6·89-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.377·7-s + 1.20·11-s − 0.554·13-s + 0.242·17-s − 0.917·19-s + 0.834·23-s − 1/5·25-s − 0.371·29-s − 1.43·31-s + 0.338·35-s + 0.328·37-s + 0.312·41-s + 1.21·43-s + 1/7·49-s + 0.824·53-s − 1.07·55-s − 0.520·59-s − 0.256·61-s + 0.496·65-s − 0.977·67-s + 0.474·71-s − 0.702·73-s − 0.455·77-s + 0.439·83-s − 0.216·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68544\)    =    \(2^{6} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(547.326\)
Root analytic conductor: \(23.3950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 68544,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.155971553\)
\(L(\frac12)\) \(\approx\) \(1.155971553\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.32985772736466, −13.66136010248960, −13.05246692525513, −12.57940169180264, −12.17496642744583, −11.72274700071018, −11.09909292115423, −10.82157871264438, −10.11655384529017, −9.401378172478337, −9.149675325354140, −8.613494887461632, −7.920076624183772, −7.357153843308881, −7.061788570199017, −6.368588979654387, −5.838689378600860, −5.204825090414601, −4.340334774188296, −4.082871210344191, −3.494898431627228, −2.821497951153909, −2.048201940139448, −1.258899629907984, −0.3780246072088773, 0.3780246072088773, 1.258899629907984, 2.048201940139448, 2.821497951153909, 3.494898431627228, 4.082871210344191, 4.340334774188296, 5.204825090414601, 5.838689378600860, 6.368588979654387, 7.061788570199017, 7.357153843308881, 7.920076624183772, 8.613494887461632, 9.149675325354140, 9.401378172478337, 10.11655384529017, 10.82157871264438, 11.09909292115423, 11.72274700071018, 12.17496642744583, 12.57940169180264, 13.05246692525513, 13.66136010248960, 14.32985772736466

Graph of the $Z$-function along the critical line