| L(s) = 1 | − 2-s + 3-s − 4-s − 6-s + 7-s + 3·8-s + 9-s − 12-s − 13-s − 14-s − 16-s − 2·17-s − 18-s − 4·19-s + 21-s + 3·24-s + 26-s + 27-s − 28-s + 6·29-s + 8·31-s − 5·32-s + 2·34-s − 36-s − 2·37-s + 4·38-s − 39-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.377·7-s + 1.06·8-s + 1/3·9-s − 0.288·12-s − 0.277·13-s − 0.267·14-s − 1/4·16-s − 0.485·17-s − 0.235·18-s − 0.917·19-s + 0.218·21-s + 0.612·24-s + 0.196·26-s + 0.192·27-s − 0.188·28-s + 1.11·29-s + 1.43·31-s − 0.883·32-s + 0.342·34-s − 1/6·36-s − 0.328·37-s + 0.648·38-s − 0.160·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 3 | \( 1 - T \) | |
| 5 | \( 1 \) | |
| 7 | \( 1 - T \) | |
| 13 | \( 1 + T \) | |
| good | 2 | \( 1 + T + p T^{2} \) | 1.2.b |
| 11 | \( 1 + p T^{2} \) | 1.11.a |
| 17 | \( 1 + 2 T + p T^{2} \) | 1.17.c |
| 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e |
| 23 | \( 1 + p T^{2} \) | 1.23.a |
| 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag |
| 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai |
| 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c |
| 41 | \( 1 + 10 T + p T^{2} \) | 1.41.k |
| 43 | \( 1 + 8 T + p T^{2} \) | 1.43.i |
| 47 | \( 1 + 12 T + p T^{2} \) | 1.47.m |
| 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag |
| 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae |
| 61 | \( 1 - 6 T + p T^{2} \) | 1.61.ag |
| 67 | \( 1 + 12 T + p T^{2} \) | 1.67.m |
| 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am |
| 73 | \( 1 - 6 T + p T^{2} \) | 1.73.ag |
| 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i |
| 83 | \( 1 + 8 T + p T^{2} \) | 1.83.i |
| 89 | \( 1 + 10 T + p T^{2} \) | 1.89.k |
| 97 | \( 1 + 10 T + p T^{2} \) | 1.97.k |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.078551788574248730409578355007, −6.93963795469707643151337039536, −6.58252246762393641838611053879, −5.28985854375872370028426205464, −4.67727594808680773901395476172, −4.08243201275097810507049839255, −3.08377318212244561568087443318, −2.11109755418395164908531106328, −1.26355119326958934502120143830, 0,
1.26355119326958934502120143830, 2.11109755418395164908531106328, 3.08377318212244561568087443318, 4.08243201275097810507049839255, 4.67727594808680773901395476172, 5.28985854375872370028426205464, 6.58252246762393641838611053879, 6.93963795469707643151337039536, 8.078551788574248730409578355007