Properties

Label 2-6825-1.1-c1-0-177
Degree $2$
Conductor $6825$
Sign $-1$
Analytic cond. $54.4978$
Root an. cond. $7.38226$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 6-s + 7-s + 3·8-s + 9-s − 12-s − 13-s − 14-s − 16-s − 2·17-s − 18-s − 4·19-s + 21-s + 3·24-s + 26-s + 27-s − 28-s + 6·29-s + 8·31-s − 5·32-s + 2·34-s − 36-s − 2·37-s + 4·38-s − 39-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.377·7-s + 1.06·8-s + 1/3·9-s − 0.288·12-s − 0.277·13-s − 0.267·14-s − 1/4·16-s − 0.485·17-s − 0.235·18-s − 0.917·19-s + 0.218·21-s + 0.612·24-s + 0.196·26-s + 0.192·27-s − 0.188·28-s + 1.11·29-s + 1.43·31-s − 0.883·32-s + 0.342·34-s − 1/6·36-s − 0.328·37-s + 0.648·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6825\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(54.4978\)
Root analytic conductor: \(7.38226\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6825,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.078551788574248730409578355007, −6.93963795469707643151337039536, −6.58252246762393641838611053879, −5.28985854375872370028426205464, −4.67727594808680773901395476172, −4.08243201275097810507049839255, −3.08377318212244561568087443318, −2.11109755418395164908531106328, −1.26355119326958934502120143830, 0, 1.26355119326958934502120143830, 2.11109755418395164908531106328, 3.08377318212244561568087443318, 4.08243201275097810507049839255, 4.67727594808680773901395476172, 5.28985854375872370028426205464, 6.58252246762393641838611053879, 6.93963795469707643151337039536, 8.078551788574248730409578355007

Graph of the $Z$-function along the critical line