Properties

Label 2-67712-1.1-c1-0-6
Degree $2$
Conductor $67712$
Sign $-1$
Analytic cond. $540.683$
Root an. cond. $23.2525$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s − 4·7-s + 9-s − 2·11-s + 2·13-s + 4·15-s + 2·17-s + 2·19-s + 8·21-s − 25-s + 4·27-s − 6·29-s + 4·33-s + 8·35-s − 10·37-s − 4·39-s − 6·41-s + 6·43-s − 2·45-s + 8·47-s + 9·49-s − 4·51-s + 6·53-s + 4·55-s − 4·57-s − 14·59-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.603·11-s + 0.554·13-s + 1.03·15-s + 0.485·17-s + 0.458·19-s + 1.74·21-s − 1/5·25-s + 0.769·27-s − 1.11·29-s + 0.696·33-s + 1.35·35-s − 1.64·37-s − 0.640·39-s − 0.937·41-s + 0.914·43-s − 0.298·45-s + 1.16·47-s + 9/7·49-s − 0.560·51-s + 0.824·53-s + 0.539·55-s − 0.529·57-s − 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(67712\)    =    \(2^{7} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(540.683\)
Root analytic conductor: \(23.2525\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 67712,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.36232490959404, −13.77746573532842, −13.38484119993041, −12.66182810591663, −12.41896669104856, −11.93807819610073, −11.48624405392854, −10.88037172691711, −10.50693315556252, −10.02183017439700, −9.394478430462438, −8.853736503442573, −8.263227272964122, −7.476338581565131, −7.233707865503066, −6.516993145621589, −6.066992892099055, −5.491866799759207, −5.172030471926290, −4.224341675243469, −3.688928433417742, −3.239410648196120, −2.563063740723578, −1.461990157237688, −0.5285705204077028, 0, 0.5285705204077028, 1.461990157237688, 2.563063740723578, 3.239410648196120, 3.688928433417742, 4.224341675243469, 5.172030471926290, 5.491866799759207, 6.066992892099055, 6.516993145621589, 7.233707865503066, 7.476338581565131, 8.263227272964122, 8.853736503442573, 9.394478430462438, 10.02183017439700, 10.50693315556252, 10.88037172691711, 11.48624405392854, 11.93807819610073, 12.41896669104856, 12.66182810591663, 13.38484119993041, 13.77746573532842, 14.36232490959404

Graph of the $Z$-function along the critical line