Properties

Label 2-66654-1.1-c1-0-43
Degree $2$
Conductor $66654$
Sign $-1$
Analytic cond. $532.234$
Root an. cond. $23.0702$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 7-s + 8-s − 2·10-s + 4·13-s + 14-s + 16-s − 6·19-s − 2·20-s − 25-s + 4·26-s + 28-s + 6·29-s − 10·31-s + 32-s − 2·35-s + 6·37-s − 6·38-s − 2·40-s + 2·41-s − 12·43-s − 10·47-s + 49-s − 50-s + 4·52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.377·7-s + 0.353·8-s − 0.632·10-s + 1.10·13-s + 0.267·14-s + 1/4·16-s − 1.37·19-s − 0.447·20-s − 1/5·25-s + 0.784·26-s + 0.188·28-s + 1.11·29-s − 1.79·31-s + 0.176·32-s − 0.338·35-s + 0.986·37-s − 0.973·38-s − 0.316·40-s + 0.312·41-s − 1.82·43-s − 1.45·47-s + 1/7·49-s − 0.141·50-s + 0.554·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66654 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66654 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66654\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(532.234\)
Root analytic conductor: \(23.0702\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 66654,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
23 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.40735749541040, −14.10673551014917, −13.30506180180466, −12.83529365031922, −12.69815262462821, −11.85062256538956, −11.34265480797897, −11.18593936080066, −10.65438975744201, −9.940151849912173, −9.405279537242272, −8.481521854966630, −8.237511901398567, −7.935275154962349, −6.964187617754237, −6.652625773212368, −6.139980370912532, −5.322215884473841, −4.946486376255411, −4.158768076652396, −3.785626324632666, −3.371585297971012, −2.406868754579386, −1.844108859896532, −0.9895478820340767, 0, 0.9895478820340767, 1.844108859896532, 2.406868754579386, 3.371585297971012, 3.785626324632666, 4.158768076652396, 4.946486376255411, 5.322215884473841, 6.139980370912532, 6.652625773212368, 6.964187617754237, 7.935275154962349, 8.237511901398567, 8.481521854966630, 9.405279537242272, 9.940151849912173, 10.65438975744201, 11.18593936080066, 11.34265480797897, 11.85062256538956, 12.69815262462821, 12.83529365031922, 13.30506180180466, 14.10673551014917, 14.40735749541040

Graph of the $Z$-function along the critical line