Properties

Label 2-62400-1.1-c1-0-115
Degree $2$
Conductor $62400$
Sign $-1$
Analytic cond. $498.266$
Root an. cond. $22.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 13-s − 2·17-s − 4·19-s − 27-s − 6·29-s − 2·37-s − 39-s + 6·41-s + 12·43-s − 4·47-s − 7·49-s + 2·51-s + 6·53-s + 4·57-s − 8·59-s + 2·61-s − 4·67-s + 12·71-s + 14·73-s + 81-s − 8·83-s + 6·87-s − 18·89-s + 6·97-s + 101-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 0.277·13-s − 0.485·17-s − 0.917·19-s − 0.192·27-s − 1.11·29-s − 0.328·37-s − 0.160·39-s + 0.937·41-s + 1.82·43-s − 0.583·47-s − 49-s + 0.280·51-s + 0.824·53-s + 0.529·57-s − 1.04·59-s + 0.256·61-s − 0.488·67-s + 1.42·71-s + 1.63·73-s + 1/9·81-s − 0.878·83-s + 0.643·87-s − 1.90·89-s + 0.609·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(498.266\)
Root analytic conductor: \(22.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 62400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.47701945669915, −14.04593506645357, −13.44643749144378, −12.84718010807630, −12.60579245966283, −12.05646383561304, −11.30259063717428, −10.93540448627591, −10.76747670337138, −9.811766613260765, −9.561918930519805, −8.828262896289255, −8.414731036051254, −7.668130112589252, −7.263452214386962, −6.529542135844435, −6.176440566950810, −5.559416739863593, −5.021181900532788, −4.244153348133357, −3.967342238209474, −3.101646870203020, −2.309213442101535, −1.729730826601354, −0.8270383113808422, 0, 0.8270383113808422, 1.729730826601354, 2.309213442101535, 3.101646870203020, 3.967342238209474, 4.244153348133357, 5.021181900532788, 5.559416739863593, 6.176440566950810, 6.529542135844435, 7.263452214386962, 7.668130112589252, 8.414731036051254, 8.828262896289255, 9.561918930519805, 9.811766613260765, 10.76747670337138, 10.93540448627591, 11.30259063717428, 12.05646383561304, 12.60579245966283, 12.84718010807630, 13.44643749144378, 14.04593506645357, 14.47701945669915

Graph of the $Z$-function along the critical line