Properties

Label 2-6240-1.1-c1-0-85
Degree $2$
Conductor $6240$
Sign $-1$
Analytic cond. $49.8266$
Root an. cond. $7.05879$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s + 2·11-s − 13-s − 15-s − 2·17-s + 2·19-s − 2·21-s − 8·23-s + 25-s − 27-s − 6·29-s − 2·31-s − 2·33-s + 2·35-s + 2·37-s + 39-s − 2·41-s + 45-s + 6·47-s − 3·49-s + 2·51-s − 10·53-s + 2·55-s − 2·57-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.603·11-s − 0.277·13-s − 0.258·15-s − 0.485·17-s + 0.458·19-s − 0.436·21-s − 1.66·23-s + 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.359·31-s − 0.348·33-s + 0.338·35-s + 0.328·37-s + 0.160·39-s − 0.312·41-s + 0.149·45-s + 0.875·47-s − 3/7·49-s + 0.280·51-s − 1.37·53-s + 0.269·55-s − 0.264·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6240\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(49.8266\)
Root analytic conductor: \(7.05879\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63812592346065427631134645534, −6.99936705819988579507261660136, −6.05502514516369207202824543114, −5.74918695424804295084918684776, −4.74831701842715043890210360189, −4.26824676151392340843652258466, −3.25066678092891094215388240738, −2.02676226080377374314207754321, −1.45640443763892834519468612302, 0, 1.45640443763892834519468612302, 2.02676226080377374314207754321, 3.25066678092891094215388240738, 4.26824676151392340843652258466, 4.74831701842715043890210360189, 5.74918695424804295084918684776, 6.05502514516369207202824543114, 6.99936705819988579507261660136, 7.63812592346065427631134645534

Graph of the $Z$-function along the critical line