Properties

Label 2-61347-1.1-c1-0-24
Degree $2$
Conductor $61347$
Sign $-1$
Analytic cond. $489.858$
Root an. cond. $22.1327$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s + 2·5-s − 6-s + 3·8-s + 9-s − 2·10-s − 12-s + 2·15-s − 16-s + 6·17-s − 18-s − 4·19-s − 2·20-s − 8·23-s + 3·24-s − 25-s + 27-s + 10·29-s − 2·30-s − 5·32-s − 6·34-s − 36-s − 6·37-s + 4·38-s + 6·40-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.894·5-s − 0.408·6-s + 1.06·8-s + 1/3·9-s − 0.632·10-s − 0.288·12-s + 0.516·15-s − 1/4·16-s + 1.45·17-s − 0.235·18-s − 0.917·19-s − 0.447·20-s − 1.66·23-s + 0.612·24-s − 1/5·25-s + 0.192·27-s + 1.85·29-s − 0.365·30-s − 0.883·32-s − 1.02·34-s − 1/6·36-s − 0.986·37-s + 0.648·38-s + 0.948·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 61347 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 61347 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(61347\)    =    \(3 \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(489.858\)
Root analytic conductor: \(22.1327\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 61347,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
11 \( 1 \)
13 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.30980588284163, −14.14290627755195, −13.68701855940834, −13.05436584861643, −12.63136865830784, −12.12604139916656, −11.46637665618565, −10.61143067627338, −10.23586598644818, −9.865164977540241, −9.550245449804655, −8.888041656841176, −8.321757959992674, −7.993772403796379, −7.569697452935844, −6.646185188479944, −6.217477082972852, −5.587360750232065, −4.889210419619188, −4.395891741565134, −3.671582284234370, −3.076577741774423, −2.170409052356598, −1.703727638500286, −1.005274603781653, 0, 1.005274603781653, 1.703727638500286, 2.170409052356598, 3.076577741774423, 3.671582284234370, 4.395891741565134, 4.889210419619188, 5.587360750232065, 6.217477082972852, 6.646185188479944, 7.569697452935844, 7.993772403796379, 8.321757959992674, 8.888041656841176, 9.550245449804655, 9.865164977540241, 10.23586598644818, 10.61143067627338, 11.46637665618565, 12.12604139916656, 12.63136865830784, 13.05436584861643, 13.68701855940834, 14.14290627755195, 14.30980588284163

Graph of the $Z$-function along the critical line