Properties

Label 2-6050-1.1-c1-0-167
Degree $2$
Conductor $6050$
Sign $-1$
Analytic cond. $48.3094$
Root an. cond. $6.95050$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 3·7-s + 8-s − 2·9-s + 12-s − 6·13-s + 3·14-s + 16-s − 7·17-s − 2·18-s − 5·19-s + 3·21-s + 6·23-s + 24-s − 6·26-s − 5·27-s + 3·28-s − 5·29-s − 3·31-s + 32-s − 7·34-s − 2·36-s − 3·37-s − 5·38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 1.13·7-s + 0.353·8-s − 2/3·9-s + 0.288·12-s − 1.66·13-s + 0.801·14-s + 1/4·16-s − 1.69·17-s − 0.471·18-s − 1.14·19-s + 0.654·21-s + 1.25·23-s + 0.204·24-s − 1.17·26-s − 0.962·27-s + 0.566·28-s − 0.928·29-s − 0.538·31-s + 0.176·32-s − 1.20·34-s − 1/3·36-s − 0.493·37-s − 0.811·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6050\)    =    \(2 \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(48.3094\)
Root analytic conductor: \(6.95050\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55846710518097433809234529522, −7.15522824999053493291691011446, −6.25653525333154357749893379339, −5.35665492802824494420800719571, −4.74461890335682791263484236396, −4.24248350881714595932270404880, −3.13633289039528983743583004611, −2.32256149854148039372877464389, −1.86665970315543630585959813737, 0, 1.86665970315543630585959813737, 2.32256149854148039372877464389, 3.13633289039528983743583004611, 4.24248350881714595932270404880, 4.74461890335682791263484236396, 5.35665492802824494420800719571, 6.25653525333154357749893379339, 7.15522824999053493291691011446, 7.55846710518097433809234529522

Graph of the $Z$-function along the critical line