Properties

Label 2-59150-1.1-c1-0-7
Degree $2$
Conductor $59150$
Sign $1$
Analytic cond. $472.315$
Root an. cond. $21.7328$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 3·9-s − 4·11-s − 14-s + 16-s + 6·17-s − 3·18-s − 4·22-s − 8·23-s − 28-s − 10·29-s + 8·31-s + 32-s + 6·34-s − 3·36-s + 6·37-s + 6·41-s − 4·43-s − 4·44-s − 8·46-s − 8·47-s + 49-s − 6·53-s − 56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s − 9-s − 1.20·11-s − 0.267·14-s + 1/4·16-s + 1.45·17-s − 0.707·18-s − 0.852·22-s − 1.66·23-s − 0.188·28-s − 1.85·29-s + 1.43·31-s + 0.176·32-s + 1.02·34-s − 1/2·36-s + 0.986·37-s + 0.937·41-s − 0.609·43-s − 0.603·44-s − 1.17·46-s − 1.16·47-s + 1/7·49-s − 0.824·53-s − 0.133·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59150\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(472.315\)
Root analytic conductor: \(21.7328\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 59150,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.783291806\)
\(L(\frac12)\) \(\approx\) \(1.783291806\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.26214594354328, −13.88934415560351, −13.29499445280188, −12.88587064388501, −12.29592614662275, −11.95505326003017, −11.24498664038361, −10.98701727252873, −10.21967894830022, −9.737539191387781, −9.438027520292348, −8.337044297752280, −7.940946966078279, −7.793376738366536, −6.872290700582710, −6.194114196922590, −5.781596372061041, −5.373186185145382, −4.793281172855825, −3.931013774272122, −3.482206691304111, −2.767518331497988, −2.397979190202953, −1.481717613791522, −0.3875698625679804, 0.3875698625679804, 1.481717613791522, 2.397979190202953, 2.767518331497988, 3.482206691304111, 3.931013774272122, 4.793281172855825, 5.373186185145382, 5.781596372061041, 6.194114196922590, 6.872290700582710, 7.793376738366536, 7.940946966078279, 8.337044297752280, 9.438027520292348, 9.737539191387781, 10.21967894830022, 10.98701727252873, 11.24498664038361, 11.95505326003017, 12.29592614662275, 12.88587064388501, 13.29499445280188, 13.88934415560351, 14.26214594354328

Graph of the $Z$-function along the critical line