Properties

Label 2-5808-1.1-c1-0-54
Degree $2$
Conductor $5808$
Sign $1$
Analytic cond. $46.3771$
Root an. cond. $6.81007$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 2·7-s + 9-s + 2·15-s + 6·17-s − 6·19-s + 2·21-s + 4·23-s − 25-s + 27-s − 2·29-s + 8·31-s + 4·35-s + 2·37-s + 10·41-s − 10·43-s + 2·45-s − 3·49-s + 6·51-s + 6·53-s − 6·57-s − 4·61-s + 2·63-s + 4·67-s + 4·69-s + 4·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 0.755·7-s + 1/3·9-s + 0.516·15-s + 1.45·17-s − 1.37·19-s + 0.436·21-s + 0.834·23-s − 1/5·25-s + 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.676·35-s + 0.328·37-s + 1.56·41-s − 1.52·43-s + 0.298·45-s − 3/7·49-s + 0.840·51-s + 0.824·53-s − 0.794·57-s − 0.512·61-s + 0.251·63-s + 0.488·67-s + 0.481·69-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5808\)    =    \(2^{4} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(46.3771\)
Root analytic conductor: \(6.81007\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.576024720\)
\(L(\frac12)\) \(\approx\) \(3.576024720\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.101216527529362733920284979811, −7.60203709567824661521234942421, −6.62586543234615509599266466061, −6.00236403098200156751707461646, −5.19517447615078786472417917092, −4.52250570077186369522065609336, −3.59822859020526338405897249719, −2.65852423340553107777232124052, −1.92542897302579050421276274862, −1.04284445979563585882237820699, 1.04284445979563585882237820699, 1.92542897302579050421276274862, 2.65852423340553107777232124052, 3.59822859020526338405897249719, 4.52250570077186369522065609336, 5.19517447615078786472417917092, 6.00236403098200156751707461646, 6.62586543234615509599266466061, 7.60203709567824661521234942421, 8.101216527529362733920284979811

Graph of the $Z$-function along the critical line