Properties

Label 2-56784-1.1-c1-0-59
Degree $2$
Conductor $56784$
Sign $-1$
Analytic cond. $453.422$
Root an. cond. $21.2937$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 3·11-s + 3·17-s + 5·19-s − 21-s − 6·23-s − 5·25-s − 27-s − 3·29-s − 4·31-s − 3·33-s + 4·37-s + 3·41-s − 8·43-s + 9·47-s + 49-s − 3·51-s − 9·53-s − 5·57-s − 6·59-s + 5·61-s + 63-s + 14·67-s + 6·69-s − 6·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.904·11-s + 0.727·17-s + 1.14·19-s − 0.218·21-s − 1.25·23-s − 25-s − 0.192·27-s − 0.557·29-s − 0.718·31-s − 0.522·33-s + 0.657·37-s + 0.468·41-s − 1.21·43-s + 1.31·47-s + 1/7·49-s − 0.420·51-s − 1.23·53-s − 0.662·57-s − 0.781·59-s + 0.640·61-s + 0.125·63-s + 1.71·67-s + 0.722·69-s − 0.712·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56784\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(453.422\)
Root analytic conductor: \(21.2937\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 56784,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.56937322819774, −14.12837141245478, −13.70305110322723, −13.11682623968057, −12.35304293067107, −12.11193920509438, −11.53991889557821, −11.24549701904346, −10.58659505849453, −9.922980534162669, −9.543094442452168, −9.152890927367286, −8.207716181109595, −7.859786403671520, −7.321073302940205, −6.709889544544721, −6.039905242558579, −5.630125956318055, −5.133339580736637, −4.326318376359011, −3.832971925693202, −3.308736001135897, −2.291388357810124, −1.607710189595918, −1.004278336808561, 0, 1.004278336808561, 1.607710189595918, 2.291388357810124, 3.308736001135897, 3.832971925693202, 4.326318376359011, 5.133339580736637, 5.630125956318055, 6.039905242558579, 6.709889544544721, 7.321073302940205, 7.859786403671520, 8.207716181109595, 9.152890927367286, 9.543094442452168, 9.922980534162669, 10.58659505849453, 11.24549701904346, 11.53991889557821, 12.11193920509438, 12.35304293067107, 13.11682623968057, 13.70305110322723, 14.12837141245478, 14.56937322819774

Graph of the $Z$-function along the critical line