Properties

Label 2-558-1.1-c1-0-1
Degree $2$
Conductor $558$
Sign $1$
Analytic cond. $4.45565$
Root an. cond. $2.11084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3·5-s − 4·7-s − 8-s − 3·10-s + 3·11-s + 5·13-s + 4·14-s + 16-s + 3·17-s − 7·19-s + 3·20-s − 3·22-s + 6·23-s + 4·25-s − 5·26-s − 4·28-s + 6·29-s + 31-s − 32-s − 3·34-s − 12·35-s + 2·37-s + 7·38-s − 3·40-s − 12·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.34·5-s − 1.51·7-s − 0.353·8-s − 0.948·10-s + 0.904·11-s + 1.38·13-s + 1.06·14-s + 1/4·16-s + 0.727·17-s − 1.60·19-s + 0.670·20-s − 0.639·22-s + 1.25·23-s + 4/5·25-s − 0.980·26-s − 0.755·28-s + 1.11·29-s + 0.179·31-s − 0.176·32-s − 0.514·34-s − 2.02·35-s + 0.328·37-s + 1.13·38-s − 0.474·40-s − 1.87·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(558\)    =    \(2 \cdot 3^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(4.45565\)
Root analytic conductor: \(2.11084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 558,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.256064199\)
\(L(\frac12)\) \(\approx\) \(1.256064199\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
31 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.34853733995905187730822977685, −9.964335668702123063898779925679, −9.008385650207468477029609714011, −8.560114382003000320260887825597, −6.77081160640587022382984853685, −6.46383969687873120831147421873, −5.63088115150215301432006425784, −3.81465163434429469092349648264, −2.65868474069055778441649444029, −1.21274221758651936189138016017, 1.21274221758651936189138016017, 2.65868474069055778441649444029, 3.81465163434429469092349648264, 5.63088115150215301432006425784, 6.46383969687873120831147421873, 6.77081160640587022382984853685, 8.560114382003000320260887825597, 9.008385650207468477029609714011, 9.964335668702123063898779925679, 10.34853733995905187730822977685

Graph of the $Z$-function along the critical line