Properties

Label 2-55770-1.1-c1-0-77
Degree $2$
Conductor $55770$
Sign $-1$
Analytic cond. $445.325$
Root an. cond. $21.1027$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s − 3·7-s + 8-s + 9-s + 10-s + 11-s + 12-s − 3·14-s + 15-s + 16-s + 2·17-s + 18-s − 2·19-s + 20-s − 3·21-s + 22-s + 3·23-s + 24-s + 25-s + 27-s − 3·28-s + 29-s + 30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.13·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s + 0.288·12-s − 0.801·14-s + 0.258·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s − 0.458·19-s + 0.223·20-s − 0.654·21-s + 0.213·22-s + 0.625·23-s + 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.566·28-s + 0.185·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55770\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(445.325\)
Root analytic conductor: \(21.1027\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55770,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53614314628493, −14.20187591650269, −13.52888063884677, −13.14780837598524, −12.79862906809239, −12.33315444089458, −11.70983278559033, −11.11695944853134, −10.43131240625813, −10.07601225886175, −9.522426981530344, −8.909590637770564, −8.635496457768491, −7.613577411331547, −7.276397289917524, −6.695042398331414, −6.063848665012141, −5.752004378905931, −4.946937837186412, −4.301985511752405, −3.709851891431660, −3.082746897729389, −2.732254231274159, −1.866310912672305, −1.199615423258650, 0, 1.199615423258650, 1.866310912672305, 2.732254231274159, 3.082746897729389, 3.709851891431660, 4.301985511752405, 4.946937837186412, 5.752004378905931, 6.063848665012141, 6.695042398331414, 7.276397289917524, 7.613577411331547, 8.635496457768491, 8.909590637770564, 9.522426981530344, 10.07601225886175, 10.43131240625813, 11.11695944853134, 11.70983278559033, 12.33315444089458, 12.79862906809239, 13.14780837598524, 13.52888063884677, 14.20187591650269, 14.53614314628493

Graph of the $Z$-function along the critical line