Properties

Label 2-54978-1.1-c1-0-4
Degree $2$
Conductor $54978$
Sign $1$
Analytic cond. $439.001$
Root an. cond. $20.9523$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 2·5-s − 6-s − 8-s + 9-s + 2·10-s − 11-s + 12-s − 2·15-s + 16-s + 17-s − 18-s + 2·19-s − 2·20-s + 22-s − 6·23-s − 24-s − 25-s + 27-s + 2·29-s + 2·30-s − 32-s − 33-s − 34-s + 36-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.632·10-s − 0.301·11-s + 0.288·12-s − 0.516·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.458·19-s − 0.447·20-s + 0.213·22-s − 1.25·23-s − 0.204·24-s − 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.365·30-s − 0.176·32-s − 0.174·33-s − 0.171·34-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54978 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54978 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54978\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(439.001\)
Root analytic conductor: \(20.9523\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 54978,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9895474451\)
\(L(\frac12)\) \(\approx\) \(0.9895474451\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.55690168319761, −13.86580910153408, −13.52026377140259, −12.81191326439460, −12.25539979552880, −11.72977197875579, −11.48917430013360, −10.72309456218267, −10.09463190731687, −9.888706743850188, −9.180521473666185, −8.549780578690049, −8.192991500830318, −7.648486618139898, −7.396951035192600, −6.558332048464386, −6.119097999217149, −5.239137427014981, −4.687098908484187, −3.805230059206216, −3.526849132282839, −2.739202025787152, −2.070436525315453, −1.331711136586320, −0.3807426097251102, 0.3807426097251102, 1.331711136586320, 2.070436525315453, 2.739202025787152, 3.526849132282839, 3.805230059206216, 4.687098908484187, 5.239137427014981, 6.119097999217149, 6.558332048464386, 7.396951035192600, 7.648486618139898, 8.192991500830318, 8.549780578690049, 9.180521473666185, 9.888706743850188, 10.09463190731687, 10.72309456218267, 11.48917430013360, 11.72977197875579, 12.25539979552880, 12.81191326439460, 13.52026377140259, 13.86580910153408, 14.55690168319761

Graph of the $Z$-function along the critical line