Properties

Label 2-54450-1.1-c1-0-61
Degree $2$
Conductor $54450$
Sign $1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 13-s − 14-s + 16-s + 3·17-s + 19-s + 6·23-s − 26-s − 28-s + 3·29-s − 4·31-s + 32-s + 3·34-s + 37-s + 38-s − 4·43-s + 6·46-s + 6·47-s − 6·49-s − 52-s + 6·53-s − 56-s + 3·58-s + 6·59-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s − 0.277·13-s − 0.267·14-s + 1/4·16-s + 0.727·17-s + 0.229·19-s + 1.25·23-s − 0.196·26-s − 0.188·28-s + 0.557·29-s − 0.718·31-s + 0.176·32-s + 0.514·34-s + 0.164·37-s + 0.162·38-s − 0.609·43-s + 0.884·46-s + 0.875·47-s − 6/7·49-s − 0.138·52-s + 0.824·53-s − 0.133·56-s + 0.393·58-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.033792786\)
\(L(\frac12)\) \(\approx\) \(4.033792786\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.41408110557122, −13.92321322174746, −13.40546368384149, −12.79120661815596, −12.59362762727967, −11.94243593595047, −11.40137681972468, −11.00544856606620, −10.26409341830456, −9.919689303526687, −9.294978965115833, −8.695966778517229, −8.089984630514672, −7.444985636550450, −6.954000204382730, −6.513304848101884, −5.775695729213451, −5.237433791257774, −4.871509534289127, −3.978921423076606, −3.542459771625302, −2.866862193874471, −2.328961406333248, −1.392243143506751, −0.6395027469292625, 0.6395027469292625, 1.392243143506751, 2.328961406333248, 2.866862193874471, 3.542459771625302, 3.978921423076606, 4.871509534289127, 5.237433791257774, 5.775695729213451, 6.513304848101884, 6.954000204382730, 7.444985636550450, 8.089984630514672, 8.695966778517229, 9.294978965115833, 9.919689303526687, 10.26409341830456, 11.00544856606620, 11.40137681972468, 11.94243593595047, 12.59362762727967, 12.79120661815596, 13.40546368384149, 13.92321322174746, 14.41408110557122

Graph of the $Z$-function along the critical line