Properties

Label 2-54208-1.1-c1-0-48
Degree $2$
Conductor $54208$
Sign $1$
Analytic cond. $432.853$
Root an. cond. $20.8051$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·5-s + 7-s + 9-s + 8·15-s + 2·17-s + 2·19-s + 2·21-s − 8·23-s + 11·25-s − 4·27-s + 2·29-s − 4·31-s + 4·35-s + 6·37-s + 2·41-s − 8·43-s + 4·45-s + 4·47-s + 49-s + 4·51-s + 10·53-s + 4·57-s + 6·59-s + 4·61-s + 63-s − 12·67-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.78·5-s + 0.377·7-s + 1/3·9-s + 2.06·15-s + 0.485·17-s + 0.458·19-s + 0.436·21-s − 1.66·23-s + 11/5·25-s − 0.769·27-s + 0.371·29-s − 0.718·31-s + 0.676·35-s + 0.986·37-s + 0.312·41-s − 1.21·43-s + 0.596·45-s + 0.583·47-s + 1/7·49-s + 0.560·51-s + 1.37·53-s + 0.529·57-s + 0.781·59-s + 0.512·61-s + 0.125·63-s − 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54208\)    =    \(2^{6} \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(432.853\)
Root analytic conductor: \(20.8051\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 54208,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.467787346\)
\(L(\frac12)\) \(\approx\) \(6.467787346\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.17841115351796, −14.06679666339436, −13.60726838237474, −13.03864690900018, −12.69280430579115, −11.79073459204037, −11.49629511114798, −10.51430695491183, −10.17163035187253, −9.746348628932635, −9.280985245267189, −8.724927636398715, −8.335332612346531, −7.650774352989741, −7.191780939396432, −6.333638237223574, −5.868925265674911, −5.459670136180798, −4.766185743801000, −3.967472543580647, −3.328658831937676, −2.630352388087268, −2.107234396245941, −1.718490532981195, −0.8053538673000836, 0.8053538673000836, 1.718490532981195, 2.107234396245941, 2.630352388087268, 3.328658831937676, 3.967472543580647, 4.766185743801000, 5.459670136180798, 5.868925265674911, 6.333638237223574, 7.191780939396432, 7.650774352989741, 8.335332612346531, 8.724927636398715, 9.280985245267189, 9.746348628932635, 10.17163035187253, 10.51430695491183, 11.49629511114798, 11.79073459204037, 12.69280430579115, 13.03864690900018, 13.60726838237474, 14.06679666339436, 14.17841115351796

Graph of the $Z$-function along the critical line