Properties

Label 2-53312-1.1-c1-0-40
Degree $2$
Conductor $53312$
Sign $-1$
Analytic cond. $425.698$
Root an. cond. $20.6324$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 3·9-s − 2·13-s − 17-s − 4·19-s − 25-s + 6·29-s + 6·37-s + 6·41-s − 12·43-s − 6·45-s + 8·47-s + 2·53-s − 4·59-s + 2·61-s − 4·65-s + 12·67-s − 2·73-s + 8·79-s + 9·81-s − 12·83-s − 2·85-s − 10·89-s − 8·95-s + 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.894·5-s − 9-s − 0.554·13-s − 0.242·17-s − 0.917·19-s − 1/5·25-s + 1.11·29-s + 0.986·37-s + 0.937·41-s − 1.82·43-s − 0.894·45-s + 1.16·47-s + 0.274·53-s − 0.520·59-s + 0.256·61-s − 0.496·65-s + 1.46·67-s − 0.234·73-s + 0.900·79-s + 81-s − 1.31·83-s − 0.216·85-s − 1.05·89-s − 0.820·95-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 53312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 53312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(53312\)    =    \(2^{6} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(425.698\)
Root analytic conductor: \(20.6324\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 53312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.47960623133162, −14.24783233937217, −13.78930430085228, −13.09539730668684, −12.86634975428889, −12.02895837382478, −11.74762416272974, −11.04711755384481, −10.58581307042651, −10.04533067789943, −9.523727451061522, −9.065473215252562, −8.385385680436822, −8.104891451370087, −7.282960430817521, −6.620783551788983, −6.186575496056792, −5.678291742064313, −5.100888857768071, −4.495277622288897, −3.814896002881014, −2.925937531208070, −2.451414119382233, −1.931159500041836, −0.9303038128017697, 0, 0.9303038128017697, 1.931159500041836, 2.451414119382233, 2.925937531208070, 3.814896002881014, 4.495277622288897, 5.100888857768071, 5.678291742064313, 6.186575496056792, 6.620783551788983, 7.282960430817521, 8.104891451370087, 8.385385680436822, 9.065473215252562, 9.523727451061522, 10.04533067789943, 10.58581307042651, 11.04711755384481, 11.74762416272974, 12.02895837382478, 12.86634975428889, 13.09539730668684, 13.78930430085228, 14.24783233937217, 14.47960623133162

Graph of the $Z$-function along the critical line