Properties

Label 2-230e2-1.1-c1-0-8
Degree $2$
Conductor $52900$
Sign $-1$
Analytic cond. $422.408$
Root an. cond. $20.5525$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s − 2·9-s + 13-s − 6·17-s − 2·19-s − 2·21-s + 5·27-s − 3·29-s + 5·31-s + 8·37-s − 39-s + 3·41-s + 8·43-s − 9·47-s − 3·49-s + 6·51-s + 6·53-s + 2·57-s − 12·59-s − 14·61-s − 4·63-s + 8·67-s − 15·71-s + 7·73-s + 10·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s − 2/3·9-s + 0.277·13-s − 1.45·17-s − 0.458·19-s − 0.436·21-s + 0.962·27-s − 0.557·29-s + 0.898·31-s + 1.31·37-s − 0.160·39-s + 0.468·41-s + 1.21·43-s − 1.31·47-s − 3/7·49-s + 0.840·51-s + 0.824·53-s + 0.264·57-s − 1.56·59-s − 1.79·61-s − 0.503·63-s + 0.977·67-s − 1.78·71-s + 0.819·73-s + 1.12·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52900\)    =    \(2^{2} \cdot 5^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(422.408\)
Root analytic conductor: \(20.5525\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 52900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69122708523959, −14.25907094669198, −13.60843168722334, −13.29684948973470, −12.55042203109649, −12.16366962632609, −11.41938717826240, −11.14129019403651, −10.88917886459460, −10.21321014224018, −9.436531358539509, −8.973269881507822, −8.473564313089464, −7.904249036862902, −7.434295934055289, −6.527776529132674, −6.225486149526487, −5.745690253711411, −4.831941986413777, −4.648719140424236, −3.962529254602463, −3.046762145314769, −2.430018610790448, −1.751356717441326, −0.8520042887497565, 0, 0.8520042887497565, 1.751356717441326, 2.430018610790448, 3.046762145314769, 3.962529254602463, 4.648719140424236, 4.831941986413777, 5.745690253711411, 6.225486149526487, 6.527776529132674, 7.434295934055289, 7.904249036862902, 8.473564313089464, 8.973269881507822, 9.436531358539509, 10.21321014224018, 10.88917886459460, 11.14129019403651, 11.41938717826240, 12.16366962632609, 12.55042203109649, 13.29684948973470, 13.60843168722334, 14.25907094669198, 14.69122708523959

Graph of the $Z$-function along the critical line