Properties

Label 2-52800-1.1-c1-0-16
Degree $2$
Conductor $52800$
Sign $1$
Analytic cond. $421.610$
Root an. cond. $20.5331$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·7-s + 9-s + 11-s − 6·13-s − 2·17-s − 4·19-s − 4·21-s − 4·23-s − 27-s − 6·29-s − 33-s + 6·37-s + 6·39-s − 6·41-s + 4·43-s + 12·47-s + 9·49-s + 2·51-s + 2·53-s + 4·57-s − 12·59-s + 14·61-s + 4·63-s + 4·67-s + 4·69-s − 12·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.51·7-s + 1/3·9-s + 0.301·11-s − 1.66·13-s − 0.485·17-s − 0.917·19-s − 0.872·21-s − 0.834·23-s − 0.192·27-s − 1.11·29-s − 0.174·33-s + 0.986·37-s + 0.960·39-s − 0.937·41-s + 0.609·43-s + 1.75·47-s + 9/7·49-s + 0.280·51-s + 0.274·53-s + 0.529·57-s − 1.56·59-s + 1.79·61-s + 0.503·63-s + 0.488·67-s + 0.481·69-s − 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52800\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(421.610\)
Root analytic conductor: \(20.5331\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 52800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.394175526\)
\(L(\frac12)\) \(\approx\) \(1.394175526\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.46552023717534, −14.15665379027187, −13.39013369919956, −12.88024619983472, −12.21766264301747, −11.92165092084954, −11.43492073431649, −10.87869936949595, −10.49916654201778, −9.853147755650887, −9.306168961860411, −8.695874481518807, −8.123680690193615, −7.460453812151813, −7.294847054233136, −6.433697752250209, −5.855724923172602, −5.249737578708856, −4.726841129785682, −4.305282628073441, −3.724632757646446, −2.425932266800769, −2.187144852921480, −1.409790225606539, −0.4241025706230641, 0.4241025706230641, 1.409790225606539, 2.187144852921480, 2.425932266800769, 3.724632757646446, 4.305282628073441, 4.726841129785682, 5.249737578708856, 5.855724923172602, 6.433697752250209, 7.294847054233136, 7.460453812151813, 8.123680690193615, 8.695874481518807, 9.306168961860411, 9.853147755650887, 10.49916654201778, 10.87869936949595, 11.43492073431649, 11.92165092084954, 12.21766264301747, 12.88024619983472, 13.39013369919956, 14.15665379027187, 14.46552023717534

Graph of the $Z$-function along the critical line