Properties

Label 2-51425-1.1-c1-0-6
Degree $2$
Conductor $51425$
Sign $1$
Analytic cond. $410.630$
Root an. cond. $20.2640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s − 4-s − 3·6-s + 3·7-s − 3·8-s + 6·9-s + 3·12-s + 5·13-s + 3·14-s − 16-s − 17-s + 6·18-s + 4·19-s − 9·21-s − 4·23-s + 9·24-s + 5·26-s − 9·27-s − 3·28-s + 31-s + 5·32-s − 34-s − 6·36-s + 2·37-s + 4·38-s − 15·39-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s − 1/2·4-s − 1.22·6-s + 1.13·7-s − 1.06·8-s + 2·9-s + 0.866·12-s + 1.38·13-s + 0.801·14-s − 1/4·16-s − 0.242·17-s + 1.41·18-s + 0.917·19-s − 1.96·21-s − 0.834·23-s + 1.83·24-s + 0.980·26-s − 1.73·27-s − 0.566·28-s + 0.179·31-s + 0.883·32-s − 0.171·34-s − 36-s + 0.328·37-s + 0.648·38-s − 2.40·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51425\)    =    \(5^{2} \cdot 11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(410.630\)
Root analytic conductor: \(20.2640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 51425,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.418974069\)
\(L(\frac12)\) \(\approx\) \(1.418974069\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
11 \( 1 \)
17 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.32806286478392, −13.89759212335364, −13.40321397295253, −13.01052888734850, −12.26071085488812, −11.92010298526310, −11.55554725970331, −10.99073374774590, −10.69337254172779, −9.904131035821986, −9.472192927151775, −8.672289992222304, −8.125471062531594, −7.663503668562131, −6.568923426058430, −6.479419323141182, −5.672711207823028, −5.381046416378157, −4.799777790388569, −4.404303682309293, −3.756663762149252, −3.114660287576590, −1.817043887599905, −1.268503064843786, −0.4621016390791855, 0.4621016390791855, 1.268503064843786, 1.817043887599905, 3.114660287576590, 3.756663762149252, 4.404303682309293, 4.799777790388569, 5.381046416378157, 5.672711207823028, 6.479419323141182, 6.568923426058430, 7.663503668562131, 8.125471062531594, 8.672289992222304, 9.472192927151775, 9.904131035821986, 10.69337254172779, 10.99073374774590, 11.55554725970331, 11.92010298526310, 12.26071085488812, 13.01052888734850, 13.40321397295253, 13.89759212335364, 14.32806286478392

Graph of the $Z$-function along the critical line