Properties

Label 2-51376-1.1-c1-0-29
Degree $2$
Conductor $51376$
Sign $1$
Analytic cond. $410.239$
Root an. cond. $20.2543$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 7-s − 2·9-s − 15-s − 3·17-s − 19-s − 21-s − 6·23-s − 4·25-s − 5·27-s − 8·29-s − 8·31-s + 35-s + 5·37-s + 2·41-s + 43-s + 2·45-s + 3·47-s − 6·49-s − 3·51-s − 2·53-s − 57-s − 10·59-s − 14·61-s + 2·63-s − 4·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.377·7-s − 2/3·9-s − 0.258·15-s − 0.727·17-s − 0.229·19-s − 0.218·21-s − 1.25·23-s − 4/5·25-s − 0.962·27-s − 1.48·29-s − 1.43·31-s + 0.169·35-s + 0.821·37-s + 0.312·41-s + 0.152·43-s + 0.298·45-s + 0.437·47-s − 6/7·49-s − 0.420·51-s − 0.274·53-s − 0.132·57-s − 1.30·59-s − 1.79·61-s + 0.251·63-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51376\)    =    \(2^{4} \cdot 13^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(410.239\)
Root analytic conductor: \(20.2543\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 51376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.89537770206831, −14.55788636515792, −14.02818839897136, −13.40682154580440, −13.11696031578424, −12.47251683568638, −11.89265361876341, −11.42544446235779, −10.93292075284791, −10.43397506037165, −9.635760883365178, −9.105911474885297, −9.004358408919388, −7.977102798612947, −7.820026366467633, −7.297177202603007, −6.394464125865730, −5.968984622925735, −5.485680241386271, −4.551286753532744, −4.000218907800587, −3.519810335438287, −2.862012949799186, −2.140335593357610, −1.597651232320347, 0, 0, 1.597651232320347, 2.140335593357610, 2.862012949799186, 3.519810335438287, 4.000218907800587, 4.551286753532744, 5.485680241386271, 5.968984622925735, 6.394464125865730, 7.297177202603007, 7.820026366467633, 7.977102798612947, 9.004358408919388, 9.105911474885297, 9.635760883365178, 10.43397506037165, 10.93292075284791, 11.42544446235779, 11.89265361876341, 12.47251683568638, 13.11696031578424, 13.40682154580440, 14.02818839897136, 14.55788636515792, 14.89537770206831

Graph of the $Z$-function along the critical line