Properties

Label 51376.s
Number of curves $1$
Conductor $51376$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 51376.s1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51376.s do not have complex multiplication.

Modular form 51376.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - q^{7} - 2 q^{9} - q^{15} - 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 51376.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51376.s1 51376n1 \([0, 1, 0, 33744, -1075372]\) \(214921799/150176\) \(-2969071076900864\) \([]\) \(161280\) \(1.6574\) \(\Gamma_0(N)\)-optimal