Properties

Label 2-51376-1.1-c1-0-3
Degree $2$
Conductor $51376$
Sign $1$
Analytic cond. $410.239$
Root an. cond. $20.2543$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·7-s − 2·9-s + 2·11-s − 5·17-s + 19-s − 3·21-s + 23-s − 5·25-s + 5·27-s − 3·29-s + 4·31-s − 2·33-s − 2·37-s + 8·41-s + 8·43-s − 8·47-s + 2·49-s + 5·51-s + 9·53-s − 57-s + 59-s + 14·61-s − 6·63-s + 13·67-s − 69-s + 10·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.13·7-s − 2/3·9-s + 0.603·11-s − 1.21·17-s + 0.229·19-s − 0.654·21-s + 0.208·23-s − 25-s + 0.962·27-s − 0.557·29-s + 0.718·31-s − 0.348·33-s − 0.328·37-s + 1.24·41-s + 1.21·43-s − 1.16·47-s + 2/7·49-s + 0.700·51-s + 1.23·53-s − 0.132·57-s + 0.130·59-s + 1.79·61-s − 0.755·63-s + 1.58·67-s − 0.120·69-s + 1.18·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51376\)    =    \(2^{4} \cdot 13^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(410.239\)
Root analytic conductor: \(20.2543\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 51376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.869198948\)
\(L(\frac12)\) \(\approx\) \(1.869198948\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 5 T + p T^{2} \) 1.17.f
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.62520047340650, −14.01518607209884, −13.50509032711787, −13.02568953860663, −12.19793337482503, −11.86227784380050, −11.40133044289993, −10.91786921604266, −10.72817685451694, −9.709731530225904, −9.332289688839661, −8.714791127725084, −8.105146056530764, −7.852074998166161, −6.811172806241951, −6.660884876413205, −5.788744994107011, −5.385878654993835, −4.833213314395739, −4.135302078483223, −3.719041177773782, −2.580288395577302, −2.183071883106801, −1.277359643682737, −0.5273202700122031, 0.5273202700122031, 1.277359643682737, 2.183071883106801, 2.580288395577302, 3.719041177773782, 4.135302078483223, 4.833213314395739, 5.385878654993835, 5.788744994107011, 6.660884876413205, 6.811172806241951, 7.852074998166161, 8.105146056530764, 8.714791127725084, 9.332289688839661, 9.709731530225904, 10.72817685451694, 10.91786921604266, 11.40133044289993, 11.86227784380050, 12.19793337482503, 13.02568953860663, 13.50509032711787, 14.01518607209884, 14.62520047340650

Graph of the $Z$-function along the critical line