Properties

Label 2-51376-1.1-c1-0-27
Degree $2$
Conductor $51376$
Sign $1$
Analytic cond. $410.239$
Root an. cond. $20.2543$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s − 3·7-s + 9-s + 5·11-s − 2·15-s − 3·17-s − 19-s + 6·21-s − 8·23-s − 4·25-s + 4·27-s − 2·29-s + 4·31-s − 10·33-s − 3·35-s − 10·37-s − 10·41-s − 43-s + 45-s − 47-s + 2·49-s + 6·51-s − 4·53-s + 5·55-s + 2·57-s + 6·59-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s − 1.13·7-s + 1/3·9-s + 1.50·11-s − 0.516·15-s − 0.727·17-s − 0.229·19-s + 1.30·21-s − 1.66·23-s − 4/5·25-s + 0.769·27-s − 0.371·29-s + 0.718·31-s − 1.74·33-s − 0.507·35-s − 1.64·37-s − 1.56·41-s − 0.152·43-s + 0.149·45-s − 0.145·47-s + 2/7·49-s + 0.840·51-s − 0.549·53-s + 0.674·55-s + 0.264·57-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51376\)    =    \(2^{4} \cdot 13^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(410.239\)
Root analytic conductor: \(20.2543\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 51376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.09993971138493, −14.31582584788097, −13.97317968399640, −13.42688893531958, −12.95935500578103, −12.14574700413929, −11.97391935080462, −11.63493975938571, −10.86488407266180, −10.35039542515102, −9.845886664502317, −9.514734363101855, −8.724666747640242, −8.431397854512566, −7.397527345356928, −6.693794156718488, −6.542714650909938, −5.907357916305928, −5.677845731208944, −4.720861535673048, −4.195173331231536, −3.570704586465669, −2.902552989166456, −1.869571408199462, −1.406128016671732, 0, 0, 1.406128016671732, 1.869571408199462, 2.902552989166456, 3.570704586465669, 4.195173331231536, 4.720861535673048, 5.677845731208944, 5.907357916305928, 6.542714650909938, 6.693794156718488, 7.397527345356928, 8.431397854512566, 8.724666747640242, 9.514734363101855, 9.845886664502317, 10.35039542515102, 10.86488407266180, 11.63493975938571, 11.97391935080462, 12.14574700413929, 12.95935500578103, 13.42688893531958, 13.97317968399640, 14.31582584788097, 15.09993971138493

Graph of the $Z$-function along the critical line