Properties

Label 2-51376-1.1-c1-0-16
Degree $2$
Conductor $51376$
Sign $-1$
Analytic cond. $410.239$
Root an. cond. $20.2543$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s − 3·7-s + 9-s − 3·11-s + 2·15-s + 5·17-s − 19-s − 6·21-s − 4·25-s − 4·27-s + 2·29-s + 8·31-s − 6·33-s − 3·35-s + 10·37-s − 6·41-s + 7·43-s + 45-s − 9·47-s + 2·49-s + 10·51-s − 8·53-s − 3·55-s − 2·57-s + 14·59-s − 5·61-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s − 1.13·7-s + 1/3·9-s − 0.904·11-s + 0.516·15-s + 1.21·17-s − 0.229·19-s − 1.30·21-s − 4/5·25-s − 0.769·27-s + 0.371·29-s + 1.43·31-s − 1.04·33-s − 0.507·35-s + 1.64·37-s − 0.937·41-s + 1.06·43-s + 0.149·45-s − 1.31·47-s + 2/7·49-s + 1.40·51-s − 1.09·53-s − 0.404·55-s − 0.264·57-s + 1.82·59-s − 0.640·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51376\)    =    \(2^{4} \cdot 13^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(410.239\)
Root analytic conductor: \(20.2543\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 5 T + p T^{2} \) 1.17.af
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.77104604689850, −14.13593290198964, −13.65957265817058, −13.39769165524905, −12.79480356895990, −12.43842610723102, −11.71544772067783, −11.14264050045676, −10.29570064639683, −9.983107686511506, −9.554071552456853, −9.203113673418197, −8.273932626971139, −8.044916535329826, −7.628109679267157, −6.702171820419559, −6.313762747955432, −5.662369006900705, −5.128722343508129, −4.241824901122665, −3.631472828098535, −2.925398688862324, −2.738460443976280, −1.985645639009697, −1.026552671350696, 0, 1.026552671350696, 1.985645639009697, 2.738460443976280, 2.925398688862324, 3.631472828098535, 4.241824901122665, 5.128722343508129, 5.662369006900705, 6.313762747955432, 6.702171820419559, 7.628109679267157, 8.044916535329826, 8.273932626971139, 9.203113673418197, 9.554071552456853, 9.983107686511506, 10.29570064639683, 11.14264050045676, 11.71544772067783, 12.43842610723102, 12.79480356895990, 13.39769165524905, 13.65957265817058, 14.13593290198964, 14.77104604689850

Graph of the $Z$-function along the critical line