Properties

Label 2-4950-1.1-c1-0-27
Degree $2$
Conductor $4950$
Sign $1$
Analytic cond. $39.5259$
Root an. cond. $6.28696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·7-s − 8-s − 11-s − 4·14-s + 16-s + 2·17-s + 8·19-s + 22-s − 4·23-s + 4·28-s − 8·31-s − 32-s − 2·34-s + 4·37-s − 8·38-s + 4·41-s + 8·43-s − 44-s + 4·46-s + 12·47-s + 9·49-s − 2·53-s − 4·56-s − 12·59-s + 2·61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.51·7-s − 0.353·8-s − 0.301·11-s − 1.06·14-s + 1/4·16-s + 0.485·17-s + 1.83·19-s + 0.213·22-s − 0.834·23-s + 0.755·28-s − 1.43·31-s − 0.176·32-s − 0.342·34-s + 0.657·37-s − 1.29·38-s + 0.624·41-s + 1.21·43-s − 0.150·44-s + 0.589·46-s + 1.75·47-s + 9/7·49-s − 0.274·53-s − 0.534·56-s − 1.56·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4950\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(39.5259\)
Root analytic conductor: \(6.28696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4950,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.804442706\)
\(L(\frac12)\) \(\approx\) \(1.804442706\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.066790782102399818642221535305, −7.63048379832041684183130314354, −7.27112577554095187025982459757, −5.93231342711641806869264538443, −5.47724648490247942904047164702, −4.63655435688963656619937352530, −3.69132133270276552583203940346, −2.63105241860318711722317177889, −1.72128255207423187700251868192, −0.869541468103618622598849636184, 0.869541468103618622598849636184, 1.72128255207423187700251868192, 2.63105241860318711722317177889, 3.69132133270276552583203940346, 4.63655435688963656619937352530, 5.47724648490247942904047164702, 5.93231342711641806869264538443, 7.27112577554095187025982459757, 7.63048379832041684183130314354, 8.066790782102399818642221535305

Graph of the $Z$-function along the critical line