| L(s)  = 1 | − 2-s     + 4-s       + 4·7-s   − 8-s       − 11-s       − 4·14-s     + 16-s   + 2·17-s     + 8·19-s       + 22-s   − 4·23-s           + 4·28-s       − 8·31-s   − 32-s     − 2·34-s       + 4·37-s   − 8·38-s       + 4·41-s     + 8·43-s   − 44-s     + 4·46-s   + 12·47-s     + 9·49-s         − 2·53-s       − 4·56-s       − 12·59-s     + 2·61-s  + ⋯ | 
| L(s)  = 1 | − 0.707·2-s     + 1/2·4-s       + 1.51·7-s   − 0.353·8-s       − 0.301·11-s       − 1.06·14-s     + 1/4·16-s   + 0.485·17-s     + 1.83·19-s       + 0.213·22-s   − 0.834·23-s           + 0.755·28-s       − 1.43·31-s   − 0.176·32-s     − 0.342·34-s       + 0.657·37-s   − 1.29·38-s       + 0.624·41-s     + 1.21·43-s   − 0.150·44-s     + 0.589·46-s   + 1.75·47-s     + 9/7·49-s         − 0.274·53-s       − 0.534·56-s       − 1.56·59-s     + 0.256·61-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.804442706\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.804442706\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 + T \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 11 | \( 1 + T \) |  | 
| good | 7 | \( 1 - 4 T + p T^{2} \) | 1.7.ae | 
|  | 13 | \( 1 + p T^{2} \) | 1.13.a | 
|  | 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac | 
|  | 19 | \( 1 - 8 T + p T^{2} \) | 1.19.ai | 
|  | 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e | 
|  | 29 | \( 1 + p T^{2} \) | 1.29.a | 
|  | 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i | 
|  | 37 | \( 1 - 4 T + p T^{2} \) | 1.37.ae | 
|  | 41 | \( 1 - 4 T + p T^{2} \) | 1.41.ae | 
|  | 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai | 
|  | 47 | \( 1 - 12 T + p T^{2} \) | 1.47.am | 
|  | 53 | \( 1 + 2 T + p T^{2} \) | 1.53.c | 
|  | 59 | \( 1 + 12 T + p T^{2} \) | 1.59.m | 
|  | 61 | \( 1 - 2 T + p T^{2} \) | 1.61.ac | 
|  | 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i | 
|  | 71 | \( 1 - 8 T + p T^{2} \) | 1.71.ai | 
|  | 73 | \( 1 - 4 T + p T^{2} \) | 1.73.ae | 
|  | 79 | \( 1 + 4 T + p T^{2} \) | 1.79.e | 
|  | 83 | \( 1 - 12 T + p T^{2} \) | 1.83.am | 
|  | 89 | \( 1 + 16 T + p T^{2} \) | 1.89.q | 
|  | 97 | \( 1 - 16 T + p T^{2} \) | 1.97.aq | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.066790782102399818642221535305, −7.63048379832041684183130314354, −7.27112577554095187025982459757, −5.93231342711641806869264538443, −5.47724648490247942904047164702, −4.63655435688963656619937352530, −3.69132133270276552583203940346, −2.63105241860318711722317177889, −1.72128255207423187700251868192, −0.869541468103618622598849636184, 
0.869541468103618622598849636184, 1.72128255207423187700251868192, 2.63105241860318711722317177889, 3.69132133270276552583203940346, 4.63655435688963656619937352530, 5.47724648490247942904047164702, 5.93231342711641806869264538443, 7.27112577554095187025982459757, 7.63048379832041684183130314354, 8.066790782102399818642221535305
