Properties

Label 2-4851-1.1-c1-0-167
Degree $2$
Conductor $4851$
Sign $-1$
Analytic cond. $38.7354$
Root an. cond. $6.22377$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 5-s + 2·10-s − 11-s − 4·13-s − 4·16-s − 2·17-s + 2·20-s − 2·22-s + 23-s − 4·25-s − 8·26-s − 7·31-s − 8·32-s − 4·34-s + 3·37-s − 8·41-s − 6·43-s − 2·44-s + 2·46-s + 8·47-s − 8·50-s − 8·52-s + 6·53-s − 55-s + 5·59-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.447·5-s + 0.632·10-s − 0.301·11-s − 1.10·13-s − 16-s − 0.485·17-s + 0.447·20-s − 0.426·22-s + 0.208·23-s − 4/5·25-s − 1.56·26-s − 1.25·31-s − 1.41·32-s − 0.685·34-s + 0.493·37-s − 1.24·41-s − 0.914·43-s − 0.301·44-s + 0.294·46-s + 1.16·47-s − 1.13·50-s − 1.10·52-s + 0.824·53-s − 0.134·55-s + 0.650·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4851 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4851 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4851\)    =    \(3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(38.7354\)
Root analytic conductor: \(6.22377\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4851,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
5 \( 1 - T + p T^{2} \) 1.5.ab
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59708149153402218158879958117, −7.03477908276603020210779304212, −6.21101030419725238522849385481, −5.55294080899685406164716506758, −4.97685157209324421449824776256, −4.28111751945710160622264923994, −3.43654811333543968800336820680, −2.58331042621701060186581520596, −1.87316747898306017870215940641, 0, 1.87316747898306017870215940641, 2.58331042621701060186581520596, 3.43654811333543968800336820680, 4.28111751945710160622264923994, 4.97685157209324421449824776256, 5.55294080899685406164716506758, 6.21101030419725238522849385481, 7.03477908276603020210779304212, 7.59708149153402218158879958117

Graph of the $Z$-function along the critical line