Properties

Label 4851.t
Number of curves $3$
Conductor $4851$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4851.t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4851.t do not have complex multiplication.

Modular form 4851.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} + q^{5} + 2 q^{10} - q^{11} - 4 q^{13} - 4 q^{16} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4851.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4851.t1 4851l3 \([0, 0, 1, -3448767, -2465153091]\) \(-52893159101157376/11\) \(-943427331\) \([]\) \(54000\) \(2.0190\)  
4851.t2 4851l2 \([0, 0, 1, -4557, -214461]\) \(-122023936/161051\) \(-13812719553171\) \([]\) \(10800\) \(1.2143\)  
4851.t3 4851l1 \([0, 0, 1, -147, 1629]\) \(-4096/11\) \(-943427331\) \([]\) \(2160\) \(0.40953\) \(\Gamma_0(N)\)-optimal