Properties

Label 2-47808-1.1-c1-0-55
Degree $2$
Conductor $47808$
Sign $1$
Analytic cond. $381.748$
Root an. cond. $19.5383$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·11-s − 6·19-s − 2·23-s − 25-s + 6·29-s − 8·31-s − 2·37-s − 4·41-s + 2·43-s − 4·47-s − 7·49-s − 6·53-s + 8·55-s + 4·59-s − 2·61-s + 10·67-s − 4·71-s − 2·73-s − 8·79-s − 83-s − 14·89-s + 12·95-s − 14·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.20·11-s − 1.37·19-s − 0.417·23-s − 1/5·25-s + 1.11·29-s − 1.43·31-s − 0.328·37-s − 0.624·41-s + 0.304·43-s − 0.583·47-s − 49-s − 0.824·53-s + 1.07·55-s + 0.520·59-s − 0.256·61-s + 1.22·67-s − 0.474·71-s − 0.234·73-s − 0.900·79-s − 0.109·83-s − 1.48·89-s + 1.23·95-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47808\)    =    \(2^{6} \cdot 3^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(381.748\)
Root analytic conductor: \(19.5383\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 47808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
83 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.22717112814865, −14.58240178978171, −14.16088594537204, −13.47429768574656, −12.89755383471055, −12.59755553023324, −12.08262975258250, −11.30321861434355, −11.11174150411841, −10.40072208016014, −10.05168441394857, −9.349716759331434, −8.575114878960932, −8.224501564729129, −7.834739493111389, −7.153533672034730, −6.648117353063030, −5.961759732900415, −5.312281752220685, −4.737839021587585, −4.135505086250044, −3.575273895942146, −2.851334119949671, −2.205681521501282, −1.409076406411352, 0, 0, 1.409076406411352, 2.205681521501282, 2.851334119949671, 3.575273895942146, 4.135505086250044, 4.737839021587585, 5.312281752220685, 5.961759732900415, 6.648117353063030, 7.153533672034730, 7.834739493111389, 8.224501564729129, 8.575114878960932, 9.349716759331434, 10.05168441394857, 10.40072208016014, 11.11174150411841, 11.30321861434355, 12.08262975258250, 12.59755553023324, 12.89755383471055, 13.47429768574656, 14.16088594537204, 14.58240178978171, 15.22717112814865

Graph of the $Z$-function along the critical line