Properties

Label 2-47808-1.1-c1-0-20
Degree $2$
Conductor $47808$
Sign $-1$
Analytic cond. $381.748$
Root an. cond. $19.5383$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s + 4·13-s − 6·17-s − 4·19-s − 2·23-s − 25-s + 4·31-s + 8·35-s − 2·37-s + 2·41-s − 8·43-s + 9·49-s + 6·53-s + 4·59-s − 10·61-s − 8·65-s − 4·67-s + 12·71-s + 2·73-s + 10·79-s + 83-s + 12·85-s + 2·89-s − 16·91-s + 8·95-s + 6·97-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s + 1.10·13-s − 1.45·17-s − 0.917·19-s − 0.417·23-s − 1/5·25-s + 0.718·31-s + 1.35·35-s − 0.328·37-s + 0.312·41-s − 1.21·43-s + 9/7·49-s + 0.824·53-s + 0.520·59-s − 1.28·61-s − 0.992·65-s − 0.488·67-s + 1.42·71-s + 0.234·73-s + 1.12·79-s + 0.109·83-s + 1.30·85-s + 0.211·89-s − 1.67·91-s + 0.820·95-s + 0.609·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47808\)    =    \(2^{6} \cdot 3^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(381.748\)
Root analytic conductor: \(19.5383\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
83 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.11844296510510, −14.26756151421920, −13.51677017820208, −13.38638192952116, −12.83767552035564, −12.24989067640723, −11.80731919279491, −11.17717276758411, −10.74821314854606, −10.19157234210520, −9.619909509825796, −8.971202459249564, −8.576004377729814, −8.080757388701969, −7.345445145299373, −6.693293256397119, −6.353654762861307, −5.951082913739422, −4.958633234047375, −4.283058840266103, −3.774119796523465, −3.374246391642660, −2.560183061685185, −1.860158875968290, −0.6710982969914153, 0, 0.6710982969914153, 1.860158875968290, 2.560183061685185, 3.374246391642660, 3.774119796523465, 4.283058840266103, 4.958633234047375, 5.951082913739422, 6.353654762861307, 6.693293256397119, 7.345445145299373, 8.080757388701969, 8.576004377729814, 8.971202459249564, 9.619909509825796, 10.19157234210520, 10.74821314854606, 11.17717276758411, 11.80731919279491, 12.24989067640723, 12.83767552035564, 13.38638192952116, 13.51677017820208, 14.26756151421920, 15.11844296510510

Graph of the $Z$-function along the critical line