Properties

Label 2-46546-1.1-c1-0-2
Degree $2$
Conductor $46546$
Sign $1$
Analytic cond. $371.671$
Root an. cond. $19.2787$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 4·7-s − 8-s + 9-s + 6·11-s − 2·12-s − 2·13-s + 4·14-s + 16-s + 17-s − 18-s + 4·19-s + 8·21-s − 6·22-s + 2·24-s − 5·25-s + 2·26-s + 4·27-s − 4·28-s + 4·31-s − 32-s − 12·33-s − 34-s + 36-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s + 1.80·11-s − 0.577·12-s − 0.554·13-s + 1.06·14-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.917·19-s + 1.74·21-s − 1.27·22-s + 0.408·24-s − 25-s + 0.392·26-s + 0.769·27-s − 0.755·28-s + 0.718·31-s − 0.176·32-s − 2.08·33-s − 0.171·34-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46546\)    =    \(2 \cdot 17 \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(371.671\)
Root analytic conductor: \(19.2787\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 46546,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7390824981\)
\(L(\frac12)\) \(\approx\) \(0.7390824981\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
17 \( 1 - T \)
37 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.55302301086507, −14.17676274974372, −13.56115764926673, −12.78655334684759, −12.39176907270304, −11.86072175428825, −11.55833209257535, −11.13620026488347, −10.21116505194529, −9.914284326743568, −9.525150763423065, −9.022055547722850, −8.376113152191075, −7.530224916217663, −7.029815514545548, −6.441170052604737, −6.226233640976757, −5.651406540124528, −4.917432884246612, −4.108377636026865, −3.450770763824966, −2.920504864009248, −1.921477332875915, −1.026802508681650, −0.4503075653132020, 0.4503075653132020, 1.026802508681650, 1.921477332875915, 2.920504864009248, 3.450770763824966, 4.108377636026865, 4.917432884246612, 5.651406540124528, 6.226233640976757, 6.441170052604737, 7.029815514545548, 7.530224916217663, 8.376113152191075, 9.022055547722850, 9.525150763423065, 9.914284326743568, 10.21116505194529, 11.13620026488347, 11.55833209257535, 11.86072175428825, 12.39176907270304, 12.78655334684759, 13.56115764926673, 14.17676274974372, 14.55302301086507

Graph of the $Z$-function along the critical line